Article

Vibration isolation using open or filled trenches Part 2: 3-D homogeneous soil

University of Patras
Computational Mechanics (Impact Factor: 2.04). 02/1990; 6(2):129-142. DOI: 10.1007/BF00350518

ABSTRACT The isolation of structures from ground transmitted waves by open and infilled trenches in a three-dimensional context is numerically studied. The soil medium is assumed to be elastic or viscoelastic, homogeneous and isotropic. Waves generated by the harmonic motion of a surface rigid machine foundation are considered in this work. The formulation and solution of the problem is accomplished by the boundary element method in the frequency domain. The infinite space fundamental solution is used requiring discretization of the trench surface, the soil-foundation interface and some portion of the free soil surface. The proposed methodology is first tested for accuracy by solving three characteristic wave propagation problems with known solutions and then applied to several vibration isolation problems involving open and concrete infilled trenches. Three-dimensional graphic displays of the surface displacement pattern around the trenches are also presented.

4 Followers
 · 
191 Views
  • Source
    Proc. Of the 4th International Conference On Civil & Architecture Engineering, 4ICCAE,, Military Technical College, Cairo, Egypt; 05/2002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this review paper, we concentrate on the use of boundary integral equation (BIE) based methods for the numerical modeling of elastic wave motion in naturally occurring media. The main reason for using BIE is the presence of the free surface of the earth, whereby large categories of problems involve continua with a small surface to volume ratio. Given that under most circumstances, BIE require surface discretization only, substantial savings can be realized in terms of the size of the mesh resulting from the discretization procedure as compared to domain-type numerical methods. We note that this is not necessarily the case with man-made materials that have finite boundaries. Thus, although the emphasis here is on wave motion in geological media, this review is potentially of interest to researchers working in other scientific fields such as material science. Most of the material referenced in this reviews drawn from research work conducted in the last fifteen years, i.e., since the year 2000, but for reasons of completeness reference is made to seminal papers and books dating since the early 1970s. Furthermore, we include here methods other than the BIE-based ones, in order to better explain all the constituent parts of hybrid methods. These have become quite popular in recent years because they seem to combine the best features of surface-only discretization techniques with those of domain type approaches such as finite elements and finite differences. The result is a more rounded approach to the subject of elastic wave motion, which is the underlying foundation of all problems that have to do with time-dependent phenomena in solids.
    Soil Dynamics and Earthquake Engineering 03/2015; 70. DOI:10.1016/j.soildyn.2014.11.013 · 1.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, a series of field experiments were carried out to investigate the active vibration isolation for a surface foundation using horizontal wave impedance block (WIB) in a multilayered ground under vertical excitations. The velocity amplitude of ground vibration was measured and the root-mean-square (RMS) velocity is used to evaluate the vibration mitigation effect of the WIB. The influences of the size, the embedded depth and the shear modulus of the WIB on the vibration mitigation were also systematically examined under different loading conditions. The experimental results convincingly indicate that WIB is effective to reduce the ground vibration, especially at high excitation frequencies. The vibration mitigation effect of the WIB would be improved when its size and shear modulus increase or the embedded depth decreases. The results also showed that the WIB may amplify rather than reduce the ground vibration when its shear modulus is smaller or the embedded depth is larger than a threshold value. Meanwhile, an improved 3D semi-analytical boundary element method (BEM) combined with a thin layer method (TLM) was proposed to account for the rectangular shape of the used WIB and the laminated characteristics of the actual ground condition in analyzing the vibration mitigation of machine foundations. Comparisons between the field experiments and the numerical analyses were also made to validate the proposed BEM.
    Soil Dynamics and Earthquake Engineering 02/2015; 69. DOI:10.1016/j.soildyn.2014.11.006 · 1.30 Impact Factor