Article

Distribution of prolyl oligopeptidase in the mouse whole-body sections and peripheral tissues

Histochemie (Impact Factor: 2.93). 11/2008; 130(5):993-1003. DOI: 10.1007/s00418-008-0468-x

ABSTRACT Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyses proline-containing peptides shorter than 30-mer, including
many bioactive peptides. The distribution of POP in the brain has been studied but little is known about the distribution
of peripheral POP. We used immunohistochemistry to localize POP in mouse whole-body sections and at the cellular level in
peripheral tissues. Furthermore, we used a POP activity assay to reveal the associations between POP protein and its enzymatic
activity. The highest POP protein densities were found in brain, kidney, testis and thymus, but in the liver the amounts of
POP protein were small. There were remarkable differences between the distribution of POP protein and activity. The highest
POP activities were found in the liver and testis while kidney had the lowest activity. In peripheral tissues, POP was present
in various cell types both in the cytoplasm and nucleus of the cells, in contrast to the brain where no nuclear localization
was detected. These findings support the proposed role of POP in cell proliferation in peripheral tissues. The dissociation
of the distribution of POP protein and its enzymatic activity points to nonhydrolytic functions of POP and to strict endogenous
regulation of POP activity.

0 Bookmarks
 · 
97 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic kidney disease is the leading cause of end-stage renal disease. Podocytes are differentiated cells necessary for the development and maintenance of the glomerular basement membrane and the capillary tufts, as well as the function of the glomerular filtration barrier. The epithelial glomerular cells express a local renin angiotensin system (RAS), that varies in different pathological situations such as hyperglycemia or mechanical stress. RAS components have been shown to be altered in the diabetic podocytopathy, and their modulation may modify diabetic nephropathy progression. Podocytes are a direct target for angiotensin II - mediated injury by altered expression and distribution of podocyte proteins. Furthermore, angiotensin II promotes podocyte injury indirectly by inducing cellular hypertrophy, increased apoptosis, and changes in the anionic charge of glomerular basement membrane, among other effects. RAS blockade has been shown to decrease the level of proteinuria and delay the progression of chronic kidney disease. This review summarizes the local intraglomerular RAS and its imbalance in diabetic podocytopathy. A better understanding of the intrapodocyte RAS might provide a new approach for diabetic kidney disease treatment.
    American journal of physiology. Renal physiology 10/2014; 308(1):ajprenal.00531.2013. DOI:10.1152/ajprenal.00531.2013 · 3.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prolyl endopeptidase (PREP) has been implicated in neuronal functions. Here we report that hypothalamic PREP is predominantly expressed in the ventromedial nucleus (VMH), where it regulates glucose-induced neuronal activation. PREP knockdown mice (Prep(gt/gt)) exhibited glucose intolerance, decreased fasting insulin, increased fasting glucagon levels, and reduced glucose-induced insulin secretion compared with wild-type controls. Consistent with this, central infusion of a specific PREP inhibitor, S17092, impaired glucose tolerance and decreased insulin levels in wild-type mice. Arguing further for a central mode of action of PREP, isolated pancreatic islets showed no difference in glucose-induced insulin release between Prep(gt/gt) and wild-type mice. Furthermore, hyperinsulinemic euglycemic clamp studies showed no difference between Prep(gt/gt) and wild-type control mice. Central PREP regulation of insulin and glucagon secretion appears to be mediated by the autonomic nervous system because Prep(gt/gt) mice have elevated sympathetic outflow and norepinephrine levels in the pancreas, and propranolol treatment reversed glucose intolerance in these mice. Finally, re-expression of PREP by bilateral VMH injection of adeno-associated virus-PREP reversed the glucose-intolerant phenotype of the Prep(gt/gt) mice. Taken together, our results unmask a previously unknown player in central regulation of glucose metabolism and pancreatic function.
    Proceedings of the National Academy of Sciences 07/2014; 111(32). DOI:10.1073/pnas.1406000111 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The misfolding and aggregation of α-synuclein (aSyn) eventually leads to an accumulation of toxic forms that disturb normal neuronal function and result in cell death. aSyn rich inclusions are seen in Parkinson’s disease, dementia with Lewy bodies and other synucleinopathies. Prolyl oligopeptidase (PREP) can accelerate the aggregation process of aSyn and the inhibition of PREP leads to a decreased amount of aggregated aSyn in cell models and in aSyn transgenic mice. In this study, we investigated the effect of 5- and 28-day PREP inhibitor (KYP-2047) treatment on a mouse strain carrying a point mutation in the aSyn coding gene. Following PREP inhibition, we found a decrease in high molecular-weight oligomeric aSyn and a concomitant increase in the amount of the autophagosome marker, LC3BII, suggesting enhanced macroautophagy (autophagy) and aSyn clearance by KYP-2047. Moreover, 28-day treatment with KYP-2047 caused significant increases in striatal dopamine levels. In cell culture, overexpression of PREP reduced the autophagy. Furthermore, the inhibition of PREP normalized the changes on autophagy markers (LC3BII and p62) caused by an autophagy inhibition or aSyn overexpression, and induced the expression of beclin 1, a positive regulator of autophagy. Taken together, our results suggest that PREP inhibition accelerates the clearance of protein aggregates via increased autophagy and thus normalizes the cell functions in vivo and in vitro. Therefore, PREP inhibition may have future potential in the treatment of synucleinopathies.
    Neurobiology of Disease 08/2014; 68. DOI:10.1016/j.nbd.2014.04.003 · 5.62 Impact Factor