Article

Fabrication and characterization of porous calcium polyphosphate scaffolds

Journal of Materials Science (Impact Factor: 2.31). 01/2006; 41(8):2429-2434. DOI: 10.1007/s10853-006-5182-2

ABSTRACT Porous calcium polyphosphate (CPP) scaffolds with different polymerization degree and crystalline phases were prepared, and
then analyzed by scanning electron microscopy (SEM), Thermmogravimetry (TG) and X-ray diffraction (XRD). Number average polymerization
degree was calculated by analyzing the calcining process of raw material Ca(H2PO4)2, as a polycondensation reaction. Amorphous CPP were prepared by the quenching from the melt of Ca(H2PO4)2 after calcining, and CPP with different polymerization degree was prepared by controlling the calcining time. Meanwhile,
CPP with the same polymerization degree was prepared to amorphous or different crystalline phases CPP which was made from
crystallization of amorphous CPP. In vitro degradation studies using 0.1 M of tris-buffered solution were performed to assess the effect of polymerization degree or
crystalline phases on mechanical properties and weight loss of the samples. With the increase of polymerization degree, the
weight loss during the degradation decreased, contrarily the strength of CPP increased. The degradation velocity of amorphous
CPP, α-CPP, β-CPP and γ-CPP with the same polymerization degree decreased in turn at the same period. The full weight loss
period of CPP can be controlled between 17 days and more than 1 year. The results of this study suggest that CPP ceramics
have potential applications for bone tissue engineering.

0 Bookmarks
 · 
136 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Preparation, characterization and in vitro study of a series of calcium polyphosphate (CPP) with different polymerization degree were reported. A series of CPP with different polymerization degree were prepared by controlling calcining time. Average polymerization degree was analyzed by liquid state 31P nuclear magnetic resonance (NMR). The microstructure was observed by scanning electric microscope (SEM). X-ray diffraction (XRD) analysis was used to demonstrate that polymerization degree would not affect the crystal system and space group of CPP. The results showed that polymerization degree increased with the increase of calcining time. Degradation studies were performed during 32 days in physiological saline solution (aqueous solution, 0.9 wt.%NaCl) to assess the effect of polymerization degree on the degradation velocity of the samples. It was also shown that the degradation velocity of CPP (polymerization degree=13) doubles than another two samples (polymerization degree=9,19). The results in the present study may be able to provide some fundamental data for controlling CPP degradation.
    Journal of Materials Science Materials in Medicine 04/2008; 19(3):1291-5. · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ion doping is one of the most important methods to modify the properties of bioceramics for better biodegrade abilities, biomechanical properties, and biocompatibilities. This paper presents a novel ion doping method applied in calcium polyphosphate (CPP)-based bioceramic scaffolds substituted by potassium and strontium ions (K/Sr) to form (K/Sr-CPP) scaffolds for bone tissue regeneration. The microstructure and crystallization of the scaffolds were detected by scanning electron microscopy and X-ray diffraction. Compressive strength and degradation tests were assessed to evaluate the mechanical and chemical stabilities of K/Sr-CPP in vitro. The cell biocompatibility was measured with respect to the cytotoxicity of the extractions of scaffolds. Muscle pouches and bone implantation were performed to evaluate the biodegradability and osteoconductivity of the scaffolds. The results indicated that the obtained K/Sr-CPP scaffolds had a single beta-CPP phase. The unit cell volume and average grain size increased but the crystallization decreased after the ions were doped into the CPP structure. The K/Sr-CPP scaffolds yielded a higher compressive strength and a better degradation property than the pure CPP scaffold. The MTT assay and in vivo results reveal that the K/Sr-CPP scaffolds exhibited a better cell biocompatibility and a tissue biocompatibility than CPP and hydroxyapatite scaffolds. This study proves the potential applications of K/Sr-CPP scaffolds in bone repair.
    Journal of Materials Science Materials in Medicine 02/2012; 23(4):1033-44. · 2.14 Impact Factor
  • Value in Health 01/2010; 13(7). · 2.19 Impact Factor