Article

Multiple Bilaterally Asymmetric Cortical Sources Account for the Auditory N1m Component

University of Texas - Houston Medical School
Brain Topography (Impact Factor: 2.52). 11/1998; 10(3):183-189. DOI: 10.1023/A:1022246825461

ABSTRACT The hypothesis that the N1, the major negative component of the cortical evoked response to auditory stimuli, originates from the primary auditory cortex has been supported by several studies. In a previous study we showed that, when monaural stimulation with pure tones is used, the distribution of the N1 peak over the scalp could be accounted for by successive activation of adjacent sources on the floor of the Sylvian fissure. In an attempt to establish the generality of the phenomenon, in this study we investigated further the generation of the N1 component using a variety of auditory stimuli, including pure tones, complex sounds (musical notes), and words, as well as binaural stimulus presentation. Additionally, we used a new recording system which allows recording of the distribution of the magnetic flux over the entire head simultaneously, thus eliminating the need for multiple recording sessions and the related problems of habituation and of changes in attention level. We found that a series of single dipolar sources could account for the entire duration of the N1m component. The location of the sources fell within the primary auditory cortex and, during the evolution of the component, they followed a posterior-anterior, medial-lateral, superior-inferior trajectory, bilaterally, along the superior surface of the temporal lobes. Additionally, the distribution of N1 sources on the two hemispheres showed a marked asymmetry, with the right hemisphere sources covering a larger area. The established consistency of successive source excitation across subjects, studies, types of stimuli, and recording systems, as well as the newly demonstrated hemispheric asymmetry of source extent, suggest the presence of a reliable phenomenon indicative of the functional organization of the auditory cortex.

0 Followers
 · 
65 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome (FXS) is an inherited form of intellectual disability and autism. Among other symptoms, FXS patients demonstrate abnormalities in sensory processing and communication. Clinical, behavioral, and electrophysiological studies consistently show auditory hypersensitivity in humans with FXS. Consistent with observations in humans, the Fmr1 KO mouse model of FXS also shows evidence of altered auditory processing and communication deficiencies. A well-known and commonly used phenotype in pre-clinical studies of FXS is audiogenic seizures. In addition, increased acoustic startle response is seen in the Fmr1 KO mice. In vivo electrophysiological recordings indicate hyper-excitable responses, broader frequency tuning, and abnormal spectrotemporal processing in primary auditory cortex of Fmr1 KO mice. Thus, auditory hyper-excitability is a robust, reliable, and translatable biomarker in Fmr1 KO mice. Abnormal auditory evoked responses have been used as outcome measures to test therapeutics in FXS patients. Given that similarly abnormal responses are present in Fmr1 KO mice suggests that cellular mechanisms can be addressed. Sensory cortical deficits are relatively more tractable from a mechanistic perspective than more complex social behaviors that are typically studied in autism and FXS. The focus of this review is to bring together clinical, functional, and structural studies in humans with electrophysiological and behavioral studies in mice to make the case that auditory hypersensitivity provides a unique opportunity to integrate molecular, cellular, circuit level studies with behavioral outcomes in the search for therapeutics for FXS and other autism spectrum disorders.
    Frontiers in Cellular Neuroscience 02/2014; 8:19. DOI:10.3389/fncel.2014.00019 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accurate estimation of location and extent of neuronal sources from EEG/MEG remains challenging. In the present study, a new source imaging method, i.e. variation and wavelet based sparse source imaging (VW-SSI), is proposed to better estimate cortical source locations and extents. VW-SSI utilizes the L1-norm regularization method with the enforcement of transform sparseness in both variation and wavelet domains. The performance of the proposed method is assessed by both simulated and experimental MEG data, obtained from a language task and a motor task. Compared to L2-norm regularizations, VW-SSI demonstrates significantly improved capability in reconstructing multiple extended cortical sources with less spatial blurredness and less localization error. With the use of transform sparseness, VW-SSI overcomes the over-focused problem in classic SSI methods. With the use of two transformations, VW-SSI further indicates significantly better performance in estimating MEG source locations and extents than other SSI methods with single transformations. The present experimental results indicate that VW-SSI can successfully estimate neural sources (and their spatial coverage) located in close areas while responsible for different functions, i.e. temporal cortical sources for auditory and language processing, and sources on the pre-bank and post-bank of the central sulcus. Meantime, all other methods investigated in the present study fail to recover these phenomena. Precise estimation of cortical source locations and extents from EEG/MEG is of significance for applications in neuroscience and neurology.
    NeuroImage 10/2013; DOI:10.1016/j.neuroimage.2013.09.070 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IN THIS WORK WE PROPOSE A BIOLOGICALLY REALISTIC LOCAL CORTICAL CIRCUIT MODEL (LCCM), BASED ON NEURAL MASSES, THAT INCORPORATES IMPORTANT ASPECTS OF THE FUNCTIONAL ORGANIZATION OF THE BRAIN THAT HAVE NOT BEEN COVERED BY PREVIOUS MODELS: (1) activity dependent plasticity of excitatory synaptic couplings via depleting and recycling of neurotransmitters and (2) realistic inter-laminar dynamics via laminar-specific distribution of and connections between neural populations. The potential of the LCCM was demonstrated by accounting for the process of auditory habituation. The model parameters were specified using Bayesian inference. It was found that: (1) besides the major serial excitatory information pathway (layer 4 to layer 2/3 to layer 5/6), there exists a parallel "short-cut" pathway (layer 4 to layer 5/6), (2) the excitatory signal flow from the pyramidal cells to the inhibitory interneurons seems to be more intra-laminar while, in contrast, the inhibitory signal flow from inhibitory interneurons to the pyramidal cells seems to be both intra- and inter-laminar, and (3) the habituation rates of the connections are unsymmetrical: forward connections (from layer 4 to layer 2/3) are more strongly habituated than backward connections (from Layer 5/6 to layer 4). Our evaluation demonstrates that the novel features of the LCCM are of crucial importance for mechanistic explanations of brain function. The incorporation of these features into a mass model makes them applicable to modeling based on macroscopic data (like EEG or MEG), which are usually available in human experiments. Our LCCM is therefore a valuable building block for future realistic models of human cognitive function.
    PLoS ONE 10/2013; 8(10):e77876. DOI:10.1371/journal.pone.0077876 · 3.53 Impact Factor