Insect fungal symbionts: A promising source of detoxifying enzymes

Journal of Industrial Microbiology and Biotechnology (Impact Factor: 2.32). 04/1992; 9(3):149-161. DOI: 10.1007/BF01569619
Source: OAI

ABSTRACT Many species of insects cultivate, inoculate, or contain symbiotic fungi. Insects feed on plant materials that contain plant-produced defensive toxins, or are exposed to insecticides or other pesticides when they become economically important pests. Therefore, it is likely that the symbiotic fungi are also exposed to these toxins and may actually contribute to detoxification of these compounds. Fungi associated with bark beetles, ambrosia beetles, termites, leaf-cutting ants, long-horned beetles, wood wasps, and drug store beetles can variously metabolize/detoxify tannins, lignins, terpenes, esters, chlorinated hydrocarbons, and other toxins. The fungi (Attamyces) cultivated by the ants and the yeast (Symbiotaphrina) contained in the cigarette beetle gut appear to have broad-spectrum detoxifying abilities. The present limiting factor for using many of these fungi for large scale detoxification of, for example, contaminated soils or agricultural commodities is their slow growth rate, but conventional strain selection techniques or biotechnological approaches should overcome this problem.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enzymatic inactivation of fungal toxins is an attractive strategy for the decontamination of agricultural commodities and for the protection of crops from phytotoxic effects of fungal metabolites. This review summarizes research on the biological detoxification of fungal toxins by microorganisms and plants and its practical applications. Some mycotoxins are detoxified during ensiling and other fermentation processes (aflatoxins, alternariol, mycophenolic acid, patulin, PR toxin) while others are transformed into toxic products or survive fermentation unchanged. Plants can detoxify fomannoxin, fusaric acid, HC-toxin, ochratoxin A and oxalate but the degradation of deoxynivalenol has yet to be proven. Microflora of the digestive tract of vertebrates and invertebrates exhibit detoxification activities towards aflatoxins, ochratoxin A, oxalate and trichothecenes. Some toxin-producing fungi are able to degrade or transform their own products under suitable conditions. Pure cultures of bacteria and fungi which detoxify mycotoxins have been isolated from complex microbial populations by screening and enrichment culture techniques. Genes responsible for some of the detoxification activities have been cloned and expressed in heterologous hosts. The detoxification of aflatoxins, cercosporin, fumonisins, fusaric acid, ochratoxin A, oxalic acid, patulin, trichothecenes and zearalenone by pure cultures is reviewed. Finally, current application of these results in food and feed production and plant breeding is summarized and expected future developments are outlined.
    Natural Toxins 02/1999; 7(1):1-23.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Asian longhorned beetle (Anoplophoraglabripennis) is an invasive, wood-boring pest that thrives in the heartwood of deciduous tree species. A large impediment faced by A. glabripennis as it feeds on woody tissue is lignin, a highly recalcitrant biopolymer that reduces access to sugars and other nutrients locked in cellulose and hemicellulose. We previously demonstrated that lignin, cellulose, and hemicellulose are actively deconstructed in the beetle gut and that the gut harbors an assemblage of microbes hypothesized to make significant contributions to these processes. While lignin degrading mechanisms have been well characterized in pure cultures of white rot basidiomycetes, little is known about such processes in microbial communities associated with wood-feeding insects. The goals of this study were to develop a taxonomic and functional profile of a gut community derived from an invasive population of larval A. glabripennis collected from infested host trees and to identify genes that could be relevant for the digestion of woody tissue and nutrient acquisition. To accomplish this goal, we taxonomically and functionally characterized the A. glabripennis midgut microbiota through amplicon and shotgun metagenome sequencing and conducted a large-scale comparison with the metagenomes from a variety of other herbivore-associated communities. This analysis distinguished the A. glabripennis larval gut metagenome from the gut communities of other herbivores, including previously sequenced termite hindgut metagenomes. Genes encoding enzymes were identified in the A. glabripennis gut metagenome that could have key roles in woody tissue digestion including candidate lignin degrading genes (laccases, dye-decolorizing peroxidases, novel peroxidases and β-etherases), 36 families of glycoside hydrolases (such as cellulases and xylanases), and genes that could facilitate nutrient recovery, essential nutrient synthesis, and detoxification. This community could serve as a reservoir of novel enzymes to enhance industrial cellulosic biofuels production or targets for novel control methods for this invasive and highly destructive insect.
    PLoS ONE 01/2013; 8(9):e73827. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Hunt bumble bee (Bombus huntii Greene, Hymenoptera: Apidae) is a holometabolous, social insect important as a pollinator in natural and agricultural ecosystems in western North America. Bumble bees spend a significant amount of time foraging on a wide variety of flowering plants, and this activity exposes them to both plant toxins and pesticides, posing a threat to individual and colony survival. Little is known about what detoxification pathways are active in bumble bees, how the expression of detoxification genes changes across life stages, or how the number of detoxification genes expressed in B. huntii compares to other insects. We found B. huntii expressed at least 584 genes associated with detoxification and stress responses. The expression levels of some of these genes, such as those encoding the cytochrome P450s, glutathione S-transferases (GSTs) and glycosidases, vary among different life stages to a greater extent than do other genes. We also found that the number of P450s, GSTs and esterase genes expressed by B. huntii is similar to the number of these genes found in the genomes of other bees, namely Bombus terrestris, Bombus impatiens, Apis mellifera and Megachile rotundata, but many fewer than are found in the fly Drosophila melanogaster. Bombus huntii has transcripts for a large number of detoxification and stress related proteins, including oxidation and reduction enzymes, conjugation enzymes, hydrolytic enzymes, ABC transporters, cadherins, and heat shock proteins. The diversity of genes expressed within some detoxification pathways varies among the life stages and castes, and we typically identified more genes in the adult females than in larvae, pupae, or adult males, for most pathways. Meanwhile, we found the numbers of detoxification and stress genes expressed by B. huntii to be more similar to other bees than to the fruit fly. The low number of detoxification genes, first noted in the honey bee, appears to be a common phenomenon among bees, and perhaps results from their symbiotic relationship with plants. Many flowering plants benefit from pollinators, and thus offer these insects rewards (such as nectar) rather than defensive plant toxins.
    BMC Genomics 12/2013; 14(1):874. · 4.40 Impact Factor


Available from