Use of starter culture of Lactobacillus plantarum BP04 in the preservation of dining-hall food waste

World Journal of Microbiology and Biotechnology (Impact Factor: 1.78). 09/2008; 24(10):2249-2256. DOI: 10.1007/s11274-008-9737-z


In this work, Lactobacillus plantarum BP04 was employed as starter culture in dining-hall food waste storage with different inoculant levels at 0, 2 and 10% (v/w)
to suppress the outgrowth of pathogenic and spoilage bacteria. Inoculation by Lactobacillus plantarum BP04 was effective in accelerating pH drop and reducing the growth period of enterobacteria to 9, 7 and 2days, corresponding
to inoculant levels at 0, 2 and 10% (v/w). Increasing inoculum levels were found to inhibit the growth of Lactobacillus brevis and Leuconostoc lactis. HPLC analysis revealed that lactic acid was the predominant organic acid during the treatment of dining-hall food waste.
Its concentration varied among the fermented processes reflecting variations of microbial activity in the fermented media.

1 Follower
7 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Owing to the growing interest in biofuels, the concept of a biorefinery where biomass is converted to a variety of useful products is gaining ground. We here present how distillery waste is combined with a by-product from a sugar production, molasses, to form a medium for the growth of Lactobacillus plantarum with yields and biomass densities comparable with conventional industrial media. Such approach enables a cost-effective utilization of the problematic wastewater from ethanol and a by-product from sugar production. It is the first approach that attempts to find low-cost media for the production of Lactobacillus plantarum biomass. Results: This study suggests that sieved wheat stillage enriched by adding 1.77 g/l yeast extract and 10% molasses (v/v), with NH(4)OH used for pH adjustment, may be used as a media for large-scale cultivation of L. plantarum. Such composition of the medium permits a high density of lactic acid bacteria (1.6 x 10(10) cfu/ml) to be achieved. Conclusions: The use of a fermentation medium consisting of distillery wastewater and molasses to obtain value-added products (such as LAB biomass and lactic acid) is a possible step for classical ethanol production to move towards a biorefinery model production in which all by and waste products are utilized to increase produced values and reduce waste production. This enables a cost-effective utilization of the problematic wastewater from ethanol and sugar production.
    Electronic Journal of Biotechnology 03/2011; 14(2). DOI:10.2225/vol14-issue2-fulltext-10 · 0.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: According to Food and Agricultural Organization (FAO), one third of food produced globally for human consumption is lost along the food supply chain. In many countries food waste are currently landfilled or incinerated together with other combustible municipal wastes for possible recovery of energy. However, these two approaches are facing more and more economic and environmental stresses. Due to its organic- and nutrient-rich composition, theoretically food waste can be utilized as a useful resource for production of biofuel through various fermentation processes. So far, valorization of food waste has attracted increasing interest, with biogas, hydrogen, ethanol and biodiesel as final products. Therefore, this review aims to examine the state-of-the-art of food waste fermentation technologies for renewable energy generation.
    Fuel 10/2014; 134:389–399. DOI:10.1016/j.fuel.2014.05.074 · 3.52 Impact Factor