Article

Genetic diversity and expression of carbon monoxide dehydrogenase from Aeropyrum pernix

Fisheries Science (Impact Factor: 0.9). 01/2011; 77(1):135-141. DOI: 10.1007/s12562-010-0296-5

ABSTRACT The aerobic hyperthermophilic archaeon Aeropyrum pernix expresses molybdopterin carbon monoxide dehydrogenase (Mo-CODH). A. pernix strains isolated from Tachibana Bay (TB1–8) were found to exhibit different levels of total Mo-CODH activity (low and high,
respectively), and the Mo-CODHs isolated from these strains also exhibit high or low activity. Mo-CODH gene transcription
was detected by real-time reverse transcription-PCR, but no relation was found between the expression level of mRNA and the
activity level of Mo-CODH. The nucleotide sequences of A. pernix genes encoding the small, large, and medium subunits of Mo-CODH, respectively, and those of the putative promoter region
were identified from all TB strains. Amino acid substitutions were found in the sequences of high- and low-activity strains,
but no mutation was detected in the putative promoter regions. Homology modeling revealed that all amino acid substitutions
were localized on the surface of the Mo-CODH proteins. Based on these findings, we conclude that in A. pernix, the activity level of Mo-CODH may be regulated by translation or post-translational modification rather than by genomic
diversity or transcription.

KeywordsCarbon monoxide dehydrogenase–Aerobe–Hyperthermophile–
Aeropyrum
–Crenarchaeota–Molybdopterin hydroxylase

0 Bookmarks
 · 
68 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Within a phylum Crenarchaeota, only some members of the hyperthermophilic class Thermoprotei, have been cultivated and characterized. In this study, we have constructed a metagenomic library from a microbial mat formation in a subsurface hot water stream of the Hishikari gold mine, Japan, and sequenced genome fragments of two different phylogroups of uncultivated thermophilic Crenarchaeota: (i) hot water crenarchaeotic group (HWCG) I (41.2 kb), and (ii) HWCG III (49.3 kb). The genome fragment of HWCG I contained a 16S rRNA gene, two tRNA genes and 35 genes encoding proteins but no 23S rRNA gene. Among the genes encoding proteins, several genes for putative aerobic-type carbon monoxide dehydrogenase represented a potential clue with regard to the yet unknown metabolism of HWCG I Archaea. The genome fragment of HWCG III contained a 16S/23S rRNA operon and 44 genes encoding proteins. In the 23S rRNA gene, we detected a homing-endonuclease encoding a group I intron similar to those detected in hyperthermophilic Crenarchaeota and Bacteria, as well as eukaryotic organelles. The reconstructed phylogenetic tree based on the 23S rRNA gene sequence reinforced the intermediate phylogenetic affiliation of HWCG III bridging the hyperthermophilic and non-thermophilic uncultivated Crenarchaeota.
    Environmental Microbiology 01/2006; 7(12):1967-84. · 5.76 Impact Factor
  • Annual Review of Microbiology 02/1983; 37:277-310. · 12.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structurally characterized molybdoenzyme carbon monoxide dehydrogenase (CODH) catalyzes the oxidation of CO to CO2 in the aerobic bacterium Oligotropha carboxidovorans. The active site of the enzyme was studied by Mo- and Cu-K-edge X-ray absorption spectroscopy. This revealed a bimetallic [Cu(I)SMo(VI)(double bond O)2] cluster in oxidized CODH which was converted into a [Cu(I)SMo(IV)(double bond O)OH2] cluster upon reduction. The Cu...Mo distance is 3.70 A in the oxidized form and is increased to 4.23 A upon reduction. The bacteria contain CODH species with the complete and functional bimetallic cluster along with enzyme species deficient in Cu and/or bridging S. The latter are precursors in the posttranslational biosynthesis of the metal cluster. Cu-deficient CODH is the most prominent precursor and contains a [HSMo(double bond O)OH2] cluster. Se-K-edge X-ray absorption spectroscopy demonstrates that Se is coordinated by two C atoms at 1.94-1.95 A distance. This is interpreted as a replacement of the S in methionine residues. In contrast to a previous report [Dobbek, H., Gremer, L., Meyer, O., and Huber, R. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8884-8889] Se was not identified in the active site of CODH.
    Biochemistry 02/2003; 42(1):222-30. · 3.38 Impact Factor