The effect of waste water treatment on river metal concentrations: Removal or enrichment?

Netherlands Institute of Ecology (NIOO-KNAW), Centre for Estuarine and Marine Ecology, PO Box 140, 4400 AC Yerseke, The Netherlands
Journal of Soils and Sediments (Impact Factor: 2.14). 02/2010; 11(2):364-372. DOI: 10.1007/s11368-010-0321-4


Purpose: Discharge of untreated domestic and industrial waste in many European rivers resulted in low oxygen concentrations and contamination with trace metals, often concentrated in sediments. Under these anoxic conditions, the formation of insoluble metal sulfides is known to reduce metal availability. Nowadays, implementation of waste water treatment plants results in increasing surface water oxygen concentrations. Under these conditions, sediments can be turned from a trace metal sink into a trace metal source. Materials and methods: In an ex situ experiment with metal contaminated sediment, we investigated the effect of surface water aeration on sediment metal sulfide (acid volatile sulfides (AVS)) concentrations and sediment metal release to the surface water. These results were compared with long-term field data, where surface water oxygen and metal concentrations, before and after the implementation of a waste water treatment plant, were compared. Results and discussion: Aeration of surface water in the experimental setup resulted in a decrease of sediment AVS concentrations due to sulfide oxidation. Metals, known to precipitate with these sulfides, became more mobile and increasing dissolved metal (arsenic (As), cadmium (Cd), copper (Cu)) concentrations in the surface water were observed. Contrary to As, Cd, or Cu, manganese (Mn) surface water concentrations decreased in the aerated treatment. Mn ions will precipitate and accumulate in the sediment as Mn oxides under the oxic conditions. Field data, however, demonstrated a decrease of all total metal surface water concentrations with increasing oxygen concentrations following the implementation of the waste water treatment plant. Conclusions: The gradual decrease in surface water metal concentrations in the river before the treatment started and the removal of metals in the waste water treatment process could not be countered by an increase in metal flux from the sediment as observed in the experiment.

Download full-text


Available from: Patrick Meire,
  • Source
    • "Manganese-and iron oxides as well as sulfides are the most important binding phases which can reduce metal mobility in sediments (Du Laing et al., 2009a; Gambrell, 1994). Inundation is expected to reduce the concentration of oxides while sulfides might become more important in reducing metal mobility (Teuchies et al., 2011). However, the oxidation–reduction conditions are depending on many factors e.g., flooding frequency and duration, plant growth, water oxygen concentrations or organic matter content. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The combination of flood prevention and tidal marsh restoration will be implemented on a large scale in the Schelde estuary (Belgium). Densely populated and industrialized, this estuary was found to be severely contaminated with trace metals. In this study we evaluated the effect of tidal restoration on sediment trace metal concentrations. To asses historical contamination of embanked-, a restored- and natural tidal areas, deep sediment cores were sampled while the evolution of metal concentrations was determined by means of superficial samples taken during 10 sampling campaigns spread over the first 3 years of the restoration project. Metal concentrations in the natural tidal marsh reflected the estuaries' contamination history. Fertilization by irrigation caused high metal concentrations in superficial soil layers of some embanked areas. However, reintroduction of the tide resulted in deposition of a new sediment layer with lower metal concentrations, comparable to the natural tidal marsh. Despite diagenetic mobility of manganese no diagenetic movements of the trace metals were observed during these first three years. Removal of metals from the estuary and burial of contaminated sediments in the restored site emphasize the potential of these restoration projects to decrease metal contamination risks. However, more research under field conditions on the effects of changes in land use and inundation related changes in metal bioavailability is needed to draw clear conclusions on the environmental consequences.
    Science of The Total Environment 03/2012; 419:187-95. DOI:10.1016/j.scitotenv.2012.01.016 · 4.10 Impact Factor
  • Source
    • "In the past, sediment quality was often negatively influenced by contaminated surface waters. Nowadays, surface water quality has improved due to enhanced sewage treatment, source control and other measures and it is expected that sediments will now act as a source of contamination for macroinvertebrates and organisms of higher trophic levels (Salomons and Brils 2004; Teuchies et al. 2011). Consequently, achieving a " good ecological status " of surface waters, as required by the European Water Framework Directive (WFD, 2000/60/EC), may strongly depend on the management of sediments. "
    [Show abstract] [Hide abstract]
    ABSTRACT: PurposeThe development of Sediment Quality Guidelines (SQGs) is one of the remaining challenges for a better protection of aquatic biodiversity and in particular sediment dwelling organisms. So far, sediment quality assessment in Flanders was based on a comparison of chemical concentrations to the geometric mean of the concentrations at 12 reference sites. The study described in this paper addressed the need for more science-based guidelines. The developed guidelines are already incorporated into Flemish legislation. Materials and methodsBased on a large sediment monitoring database, containing physico-chemical properties, concentrations of chemicals, macrobenthic community assemblages and ecotoxicological data, Sediment Effect Concentrations (SECs) were calculated as basis for the SQGs. The derived SECs were based on ecological effects, namely Lowest and Severe Effect Levels (LEL/SEL), as well as ecotoxicological endpoints, namely Threshold and Probable Effect Levels (TEL/PEL). The average values of the ecological and ecotoxicological SECs were used to distinguish five sediment quality classes. Results and discussionThe ecological values were in general less stringent than the ecotoxicological values. However, the Lowest Effect Levels (95% of the benthic taxa can be present under this level) and Threshold Effect Levels (no toxic effect is expected under this level) did not differ significantly. Probable Effect Levels (concentrations above this level will certainly result in toxic effects) were generally lower than the Severe Effect Levels (above this level only 5% or less of the taxa are present). The SECs calculated in this study enabled us to correctly identify 87.9% of the sediments as toxic. The development of SQGs based on a combination of the LEL/SEL and TEL/PEL methods enabled us to underpin these SQGs based on field observations and will improve the assessment of sediment quality based on chemical parameters. Although sediments typically contain complex mixtures of contaminants, only a limited number of these contaminants will be measured. Additional application of bioassays for the overall sediment quality assessment is therefore recommended. ConclusionsThis study describes the development of SQGs in Flanders, which are based on ecological and ecotoxicological data derived from a TRIAD monitoring network. The combination of the LEL and PEL resulted in SQGs that were recently incorporated in Flemish legislation and for which the respective pore water concentrations were in the same order of magnitude as the Annual Average Environmental Quality Standards values for Water Framework Directive priority pollutants. KeywordsEQS–Macrobenthos–Priority substances–SEC–Sediment quality guidelines–SQG–TRIAD
    Journal of Soils and Sediments 04/2011; 11(3):504-517. DOI:10.1007/s11368-010-0328-x · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ecosystem & Ecography "Man and man's earth are unexhausted and undiscovered. Wake and listen! Verily, the earth shall yet be a source of recovery. Remain faithful to the earth, with the power of your virtue. Let your gift-giving love and your knowledge serves the meaning of the earth." Friedrich Nietzche The presence of heavy metals in soils is an environmental hazard key and one of the most difficult contamination control problems to solve. There are two main causes: firstly, the chemical character of heavy metals (they are not subjected to biodegradation processes), favours accumulate in the environment and, secondly, the complexity of the geochemical soil matrix. Simplification of this matrix increase chances of recognition of basic soil processes [1]. Soil is a major reservoir for xenobiotic compounds as it possesses an ability to bind various chemicals [2]. The soil as an important ecological factor due to several characteristics: close correlation with the climate and region and its structure, configuration and nature; its own quality on which relies formation and protection of surface and underground matter resources; influence on humans nutrition and its role in social and economic development of mankind. The heavy metals have an important influence on plants, animals and humans development. The chemical compositions of these heavy metals don't exceed 0.01% in the analyzed systems and their physiologic role is essential for normal biological life cycle of organisms [3]. They are absolutely necessary for living organisms but their biological role is still difficult to establish. If taken alone they don't show deficiency symptom, only in combination with other mineral elements and don't seem to have a direct function in plants nutrition. Soil has the ability to immobilise introduced chemicals like heavy metal ions [4,5]. From the geological and chemical point of view the heavy metals can express lots of proprieties. The solid phase of soils and environmental factors play an important role in heavy metals solubility, dynamics and balance in the soil. Between solid, liquid and gaseous phases exists a dynamic equilibrium in the soil.
    01/2012; DOI:10.4172/2157-7625.1000e103
Show more