Kinetics of improved productivity of β-galactosidase by a cycloheximide-resistant mutant of Kluyveromyces marxianus

National Institute for Biotechnology and Genetic Engineering
Biotechnology Letters (Impact Factor: 1.85). 04/2004; 26(9):741-746. DOI: 10.1023/B:BILE.0000024089.52462.98

ABSTRACT The maximum volumetric productivity of -galactosidase by a Kluyveromyces marxianus mutant, grown on lactose/corn steep liquor medium for 3d, was 150IUl–1h–1 which is twice that of the parent organism. During product formation, mutated cells provided more resistance against thermal inactivation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Strains belonging to the yeast species Kluyveromyces marxianus have been isolated from a great variety of habitats, which results in a high metabolic diversity and a substantial degree of intraspecific polymorphism. As a consequence, several different biotechnological applications have been investigated with this yeast: production of enzymes (beta-galactosidase, beta-glucosidase, inulinase, and polygalacturonases, among others), of single-cell protein, of aroma compounds, and of ethanol (including high-temperature and simultaneous saccharification-fermentation processes); reduction of lactose content in food products; production of bioingredients from cheese-whey; bioremediation; as an anticholesterolemic agent; and as a host for heterologous protein production. Compared to its congener and model organism, Kluyveromyces lactis, the accumulated knowledge on K. marxianus is much smaller and spread over a number of different strains. Although there is no publicly available genome sequence for this species, 20% of the CBS 712 strain genome was randomly sequenced (Llorente et al. in FEBS Lett 487:71-75, 2000). In spite of these facts, K. marxianus can envisage a great biotechnological future because of some of its qualities, such as a broad substrate spectrum, thermotolerance, high growth rates, and less tendency to ferment when exposed to sugar excess, when compared to K. lactis. To increase our knowledge on the biology of this species and to enable the potential applications to be converted into industrial practice, a more systematic approach, including the careful choice of (a) reference strain(s) by the scientific community, would certainly be of great value.
    Applied Microbiology and Biotechnology 07/2008; 79(3):339-54. · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Industrial byproducts namely canola meal, rice bran, sunflower meal, and wheat straw were used as substrates for endo-xylanase production by Humicola lanuginosemutant TH1 through solid substrate fermentation. The enzyme was secreted extracellularly by both wild and mutant cultures. Rice bran supported the maximum production of endo-xylanase followed by wheat straw, canola meal and sunflower meal. The highest activity was achieved after 72 h of culture and the highest yields from the above substrates were 842, 840, 610 and 608 IU per g substrate consumed respectively. The highest productivity (281 IU flask−1 h−1 corresponding to 5620 l−1 h-1) of endo-xylanase by the mutant of H. lanuginosa was 1.6-fold more than that produced by the parental organism in solid-state fermentation of rice bran at 45 °C. Maximum specific activity (180 IU mg−1 protein) and substrate consumption rates were significantly more than those reported by previous researchers on Humicola sp. The mutant possessed markedly low accompanying cellulase activity. Thermodynamic studies revealed that the mutant required significantly lower activation energy for enzyme production and higher for thermal inactivation which signified that the endogenous metabolic machinery of mutant cells exerted more protection against thermal inactivation during product formation than that needed by its parental cultures.
    World Journal of Microbiology and Biotechnology 09/2005; 21(6):869-876. · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation and maximization of lipase production in a mutant derivative of R. oligosporus has been investigated using different substrates, inoculum sizes, pH of the medium, temperature, and nitrogen sources in shake flask experiments and batch fermentation in a fermentor. The production of intracellular lipase was improved 3 times following medium optimization involving one-at-a-time approach and aeration in the fermentor. Interestingly, intracellular lipase was poorly induced by oils, instead its production was induced by sugars, mainly starch, lactose, sucrose, xylose, glucose and glycerol. Dependent variables studied were cell mass, lipase activity, lipase yield, lipase specific and volumetric rate of formation. It was confirmed that lipase production in the derepressed mutant is sufficiently uncoupled from catabolite repression. The results of average specific productivities at various temperatures worked out according to the Arrhenius equation revealed that mutation decreased the magnitude of enthalpy and entropy demand in the inactivation equilibrium during product formation, suggesting that mutation made the metabolic network of the organism thermally more stable. The highest magnitudes of volumetric productivity (QP=490 IU/(L·h)) and other product attributes of lipase formation occurring on optimized medium in the fermentor are greater than the values reported by other workers. The purified enzyme is monomeric in nature and exhibits stability up to 80 °C and pH=6.0–8.0. Activation energy, enthalpy and entropy of catalysis at 50 °C, and magnitudes of Gibbs free energy for substrate binding, transition state stabilization and melting point indicated that this lipase is highly thermostable.
    Food Technology Biotechnology. 01/2008; 46:402-412.