Article

Species of Oligonychus infesting date palm cultivars in the Southern Arava Valley of Israel

Phytoparasitica (Impact Factor: 0.72). 01/2003; 31(2):144-153. DOI: 10.1007/BF02980784

ABSTRACT In a study of date fruit damage caused byOligonychus spp., we investigated whether the cultivar affects phenology, and on what hosts the mites over-winter. Samples were taken
from ‘Deglet Noor’, ‘Barhi’ and ‘Medjool’ trees from mid-April through mid-September during the years 1999–2002. In the ground-cover
mites were monitored by collecting Bermuda grass (Cynodon dactylon) under each sampling tree. Over 99% of the mites collected on Deglet Noor and Barhi fruit were identified asO. afrasiaticus. Mean population levels ofO. afrasiaticus reached ten mites or more (initiation of infestation) on Medjool in the second half of May, whereas on Deglet Noor this did
not occur before the first week of July. On Barhi the initiation of infestation varied between plots and years, ranging from
the second half of May to the beginning of July, but always occurred earlier than Deglet Noor. Mite populations on the pinnae
remained low from June through October, not exceeding seven mites per pinna, whereas on fruit strands they reached peak populations
of approximately 4000 mites per strand. The sex ratio (proportion of females) ofO. afrasiaticus on fruit of all three cultivars was highly female-biased, usually above 0.85. During winter,O. afrasiaticus was found on Bermuda grass in the orchard ground-cover as well as on fronds of all three cultivars.

0 Bookmarks
 · 
171 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several mite species commonly attack cultivated citrus around the world. Up to 104 phytophagous species have been reported causing damage to leaves, buds and fruits, but only a dozen can be considered major pests requiring control measures. In recent years, several species have expanded their geographical range primarily due to the great increase in trade and travel worldwide, representing a threat to agriculture in many countries. Three spider mite species (Acari: Tetranychidae) have recently invaded the citrus-growing areas in the Mediterranean region and Latin America. The Oriental red mite, Eutetranychus orientalis (Klein), presumably from the Near East, was detected in southern Spain in 2001. The Texas citrus mite, Eutetranychus banksi (McGregor), is widely distributed in North, Central and South America. It was first reported in Europe in 1999 on citrus in Portugal; afterwards the mite invaded the citrus orchards in southern Spain. In Latin America, the Hindustan citrus mite, Schizotetranychus hindustanicus (Hirst), previously known only from citrus and other host plants in India, was reported causing significant damage to citrus leaves and fruits in Zulia, northwest Venezuela, in the late 1990s. Later, this mite species spread to the southeast being detected on lemon trees in the state of Roraima in northern Brazil in 2008. Whereas damage levels, population dynamics and control measures are relatively well know in the case of Oriental red mite and Texas citrus mite, our knowledge of S. hindustanicus is noticeably scant. In the present paper, information on pest status, seasonal trends and natural enemies in invaded areas is provided for these species, together with morphological data useful for identification. Because invasive species may evolve during the invasion process, comparison of behavior, damage and management options between native and invaded areas for these species will be useful for understanding the invader's success and their ability to colonize new regions.
    Experimental and Applied Acarology 11/2012; · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of DNA barcodes, short DNA sequences from a standardized region of the genome, has recently been proposed as a tool to facilitate species identification and discovery. Here we show that second internal transcribed spacer of nuclear ribosomal DNA (rDNA-ITS2) barcodes effectively discriminate among 16 species of spider mites (Acari: Tetranychidae) from Israel. The barcode sequences of each species were unambiguously distinguishable from all other species and formed distinct, nonoverlapping monophyletic groups in the maximum-parsimony tree. Sequence divergences were generally much greater between species than within them. Using a 0.02 (2%) threshold for species diagnosis in our data set, 14 out of 16 species recognized by morphological criteria would be accurately identified. The only exceptions involved the low divergence, 0.011-0.015 (1.1-1.5%), between Tetranychus urticae and Tetranychus turkestani, where speciation may have occurred only recently. Still, these species had fixed alternative rDNA-ITS2 variants, with five diagnostic nucleotide substitutions. As a result, we tentatively conclude that rDNA-ITS2 sequence barcodes may serve as an effective tool for the identification of spider mite species and can be applicable as a diagnostic tool for quarantine and other pest management activities and decision-making. We predict that our work, together with similar efforts, will provide in the future the platform for a uniform, accurate, practical and easy-to-use method of spider mite species identification.
    Enperimental and Applied Acarology 02/2007; 41(3):169-81. · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review summarizes the current knowledge on the distribution, natural history, economic importance and management of 16 major species of date palm pests in Israel. Another 15, rarely occurring, pest species are also identified. Research on the date palm pests in Israel was initiated against a background of severe outbreaks of scale insects in the late 1950s. These outbreaks were caused mainly by unrestrained use of organophosphates. This situation led to the gradual development of an Integrated Pest Management (IPM) program, which was implemented first against scale insects and later against fruit pests. The IMP approach resulted in successful control of the scale insects, up to the present, whereas agrotechnical and crop management procedures, including covering the fruit bunches with plastic nets and early harvesting of several date cultivars, were successfully applied to achieve efficient control of the fruit moths. In addition, the use of chemical compounds in date plantations was drastically reduced and restricted to heavy foci of pest infestation. In time, microbial control, mainly application ofBacillus thuringiensis products against the lesser date moth, and the use of pheromone traps for monitoring and controlling red palm weevil, enabled further reductions in the use of synthetic insecticides. The overall change in pest management also significantly improved the preservation of natural enemies of the pests in the plantations. Whereas in the 1950s the major problems were caused by the parlatoria date scale and the green scale, in the early 2000s the key pests in date plantations in Israel are the lesser date moth and sap beetles in most of the date-growing areas, and spider mites which are restricted to the Arava Valley. Future management of the first two of these pests should rely on an improved monitoring system and integration of pheromone application for reduction of the population and damage. Efforst should be made to prevent the red palm weevil, which currently is a potential pest, from becoming an actual key pest in date plantations.
    Phytoparasitica 01/2008; 36(5):411-448. · 0.72 Impact Factor

Full-text

View
30 Downloads
Available from
Jun 2, 2014