A Lagrangian formulation of the Joos-Weinberg wave equations for spin- s particles

Il Nuovo Cimento A 01/1968; 57(2):210-218. DOI: 10.1007/BF02891000

ABSTRACT The Lorentz covariant, spin-s, Joos-Weinberg equations are derived from a Lagrangian. This Lagrangian is written entirely in terms of an auxiliary field
φ (x) and the Joos-Weinberg wave function ψ(x) is defined in terms of φ(x). The function ψ(x) describes a free, massive, spin-s particle, while φ(x) describes a free, massive, spin-s particle «decorated» with massless, spin-s neutrinos. The question of whether ψ(x) or φ(x) is the wave function corresponding to reality is discussed. The interpretation of ψ(x) as the actual wave function is favoured here.
Si deducono da una lagrangiana le equazioni di Joos-Weinberg, di spins, covarianti secondo Lorentz. Si scrive la lagrangiana interamente in termini di un campo ausiliario φ(x) e si definisce la funzione d'onda di Joos-Weinberg ψ(x) in termini di φ(x). La funzione ψ(x) descrive una particella libera, dotata di massa, di spins, mentre φ(x) descrive una particella libera, dotata di massa, di spins «adorna» di neutrini, privi di massa, di spins. Si discute quale delle due funzioni ψ(x) o φ(x) sia la funzione d'onda corrispondente alla realtà. In questo articolo si preferisce interpretare ψ(x) come l'effettiva funzione d'onda.
Из Лагранжиана выводятся Лорентц-инвариантные уравнения йюса-Вейнберга для спинаs. Лагранжиан записывается полностью в терминах вспомогательного поля φ(x), и вллновая функция йюса-Вейнберга ψ(x) определяется в терминах φ(x). Функция ψ(x) описывает свободную массивную частипу со спиномs, тогда как φ(x) описывает свободную массивную частипу со спиномs, «украшенную» безмассовыми нейтрино со спиномs. Обсуждается вопрос какая из функций ψ(x) или φ(x) является волновой функцией, соответствуюшей действительности. Здесь отдается предпочтение интерпретации, когда ψ(x) представляет реальную волновую функцию.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper a manifestly covariant wave equation for a spin one particle is given in which the wave function has six components. The thirty-six bilinear covariants are exhibited. Formulas for the threevector, four-vector, and antisymmetric tensor polarization operators are given which are valid for any spin. The connections with other spin-one formalisms are shown. In questo articolo si dà un’equazione d’onda manifestamente covariante per una particella con spin 1, in oui la funzione d’onda ha sei componenti. Si scrivono i trentasei covarianti bilineari. Si dànno le formule degli operatori di polarizzazione del trivettore, del quadrivettore e del tensore antisimmetrico, che sono valide per qualunque spin. Si mostrano le relazioni con altri formalismi valide per spin uno.
    Il Nuovo Cimento 04/1965; 36(4):1303-1315. DOI:10.1007/BF02750706
  • [Show abstract] [Hide abstract]
    ABSTRACT: A Lorentz covariant description of a particle and antiparticle with spin s=0, 1/2, 1, ⋯ and finite rest mass is given in this paper. The wave function has 2(2s+1) components so that no auxiliary conditions are needed. The basic idea is to postulate the rest-system Hamiltonian and make the Lorentz transformation to the laboratory system. An algorithm which is a generalization of the Foldy-Wouthuysen transformation is found for constructing the laboratory-system Hamiltonian and polarization operators.
    Physical Review 07/1964; 135(1B). DOI:10.1103/PhysRev.135.B241
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: From group-theoretical considerations, invariant scattering amplitudes ; for two-body reactions of particles with arbitrary spins and nonzero masses are ; constructed in various forms, including helicity amplitudes and amplitudes free ; of kinematical singularities. They are linear combinations of spin basis ; functions with scalar coefficients. In the process of construction the Pauli ; spin matrices are generalized for arbitrary spin. On the basis of a Mandelstain ; representation for the scalar coefficients, the unique analytic continuation of ; the amplitudes in total angular momentum is obtained. Possible kinematical ; singularities of the scalar amplitudes at the boundary of the physical region are ; discussed. (auth)
    Physical Review 04/1963; 130(1):442-457. DOI:10.1103/PhysRev.130.442


Available from