Article

Bone Adhesives in Trauma and Orthopedic Surgery

University of Gießen—Marburg Department of Trauma Surgery Rudolf-Buchheim-Strasse 7 35385 Gießen Germany Rudolf-Buchheim-Strasse 7 35385 Gießen Germany
European Journal of Trauma 03/2006; 32(2):141-148. DOI: 10.1007/s00068-006-6040-2

ABSTRACT Adhesives, especially bone adhesives, are resorbed and degraded to non-toxic products after fulfilling their function in contact
with the living organism. The use of such bone adhesives has found growing interest in all fields of medicine in the last
50 years. The dream of trauma and orthopedic surgeons for alternatives to osteosynthesis and pins is reflected in the development
of a variety of surrogates of biological or synthetic origin. Despite a longstanding history of research in this field up
to now a clinically applicable alternative could not have been found on the field of bone gluing. The application consistently
collapsed, because these adhesives were not tailored to the conditions met within the living organism. The following article
is meant to provide an overview of the development, the state of the art and today’s knowledge of bone adhesives. In addition,
the article wants to pinpoint the tremendous progress made on this subject, made possible by the joint effort of basic researchers
and surgeons. The results show that in the future a successful reconstructive surgery will emerge from the application of
synthetic biomaterials.

0 Bookmarks
 · 
232 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interest in tissue adhesives as alternatives for conventional wound closing applications, such as sutures and staples, has increased in the last few decades due to numerous possible advantages, including less discomfort and lower cost. Novel tissue adhesives based on gelatin, with alginate as a polymeric additive and crosslinked by carbodiimide were developed and loaded with two types of drugs for pain relief, bupivacaine and ibuprofen, in order to improve the therapeutic effect. The release of the drugs from the adhesive matrix was found to be controlled mainly by the adhesive's characteristics, i.e. swelling and hydrophilic group concentration. The drug characteristics, i.e. hydrophilicity and electrical interactions between the drug and the polymeric components, were also found to have some effect. Incorporation of bupivacaine was found to improve the bonding strength of the adhesive due to its inert nature and the reinforcing effect of its fibrous crystals, whereas incorporation of ibuprofen was found to have an adverse effect on the bonding strength, probably due to its reaction with the other adhesive components which increased the crosslinking density. Overall, the novel drug-eluting gelatin-based bioadhesives investigated in this research, especially those loaded with bupivacaine, demonstrated a promising potential for use in wound closing applications.
    Journal of Biomaterials Science Polymer Edition 10/2013; · 1.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of adhesives in surgery is an old but mostly unfulfilled dream (Donkerwolcke et al., 1998). Compared to conventional bonding techniques employed in surgery today like stitching, fixing with screws, pins, and plates, gluing has several advantages because it represents a fast and uncomplicated technique that causes no or only slight injuries of surrounding tissue and enables a homogenous load distribution between bonded materials (Rimpler, 1996). If such an adhesive would be gradually self-degrading in the body, newly formed tissue could replace the adhesive during the healing process and a complete regeneration of the damaged tissue would be possible. A gradual degradation of the adhesive would also maintain the necessary bonding strength within the tissue repair period and finally no foreign material would remain in the body.
    01/2010;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nature has been developing adhesives for millions of years, mankind for just a few thousands of years. For this reason it is worth having a closer look at what nature does and how we can develop bio-inspired adhesives for technical and medical applications. Some examples of natural materials which have already been used for technical adhesives are casein, latex rubber, tree gum, and adhesives derived from natural sources used for the waterproofing of natural textiles, the production of paper, and the sealing of jars (Papov et al., 1995; Creton and Papon, 2003). Bio-inspired adhesives can be found in all areas of the natural world. Because of their origin, those adhesives are also called biological adhesives or bioadhesives and they fulfill several different functions (Smith and Callow, 2006; Carrington, 2008; Antonietti and Fratzl, 2010). Plants use adhesives, for example, for self-healing and for protecting themselves against wood defects, while animals use sticky materials for protecting themselves against predators and for hunting prey (Keckes et al., 2003; Schreiber et al., 2005; Flammang, 2006; Voigt and Gorb, 2008; Plaza et al., 2009). Microorganisms use adhesive material for settlement, surface attachment, and colonization (Melzer et al., 2008; Flammang et al., 2009; Santos et al., 2009; Scholz et al., 2009). Higher organisms, such as humans, rely on an inducible adhesive system: the wound healing promoter fibrinogen ((Berlind et al., 2010), which is discussed in detail in Chapter 15, p. 225 of this book).