Bone Adhesives in Trauma and Orthopedic Surgery

University of Gießen—Marburg Department of Trauma Surgery Rudolf-Buchheim-Strasse 7 35385 Gießen Germany Rudolf-Buchheim-Strasse 7 35385 Gießen Germany
European Journal of Trauma 03/2006; 32(2):141-148. DOI: 10.1007/s00068-006-6040-2

ABSTRACT Adhesives, especially bone adhesives, are resorbed and degraded to non-toxic products after fulfilling their function in contact
with the living organism. The use of such bone adhesives has found growing interest in all fields of medicine in the last
50 years. The dream of trauma and orthopedic surgeons for alternatives to osteosynthesis and pins is reflected in the development
of a variety of surrogates of biological or synthetic origin. Despite a longstanding history of research in this field up
to now a clinically applicable alternative could not have been found on the field of bone gluing. The application consistently
collapsed, because these adhesives were not tailored to the conditions met within the living organism. The following article
is meant to provide an overview of the development, the state of the art and today’s knowledge of bone adhesives. In addition,
the article wants to pinpoint the tremendous progress made on this subject, made possible by the joint effort of basic researchers
and surgeons. The results show that in the future a successful reconstructive surgery will emerge from the application of
synthetic biomaterials.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the effect of reactive mono- and tricalcium phosphate addition on the mechanical, surface free energy, degradation and cell compatibility properties of poly(lactide-co-propylene glycol-co-lactide) dimethacrylate (PPGLDMA) thin films. Dry composites containing up to 70 wt.% filler were in a flexible rubber state at body temperature. Filler addition increased the initial strength and Young's modulus and reduced the elastic and permanent deformation under load. The polymer had high polar surface free energy, which might enable greater spread upon bone. This was significantly reduced by filler addition but not by water immersion for 7 days. The samples exhibited reduced water sorption and associated bulk degradation when compared with previous work with thicker samples. Their cell compatibility was also improved. Filler raised water sorption and degradation but improved cell proliferation. The materials are promising bone adhesive candidates for low-load-bearing areas.
    Acta biomaterialia 08/2011; 8(1):313-20. · 5.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnesium phosphate cement (MPC) is a kind of novel biodegradable bone adhesive for its distinct performance. However, there is few research work concerning on the systemic biocompatibility and genetic toxicological evaluation of MPC. In this study, the investigation on the inherited toxicology of MPC including gene mutation assay (Ames test), chromosome aberration assay (micronucleus test), and DNA damage assay (unscheduled DNA synthesis test) were carried out. Fracture healing and degradation behavior were explored for the evaluation of the biocompatibility of MPC, using macroscopical histological, histomorphometrical, and scanning electron microscopical methods. The results of mutagenicity and potential carcinogenicity of MPC extracts were negative, and the animal implantation illustrated no toxicity and good resorption. The study suggested that bioresorbable MPC was safe for application and might have potential applications for physiological fracture fixation.
    Colloids and surfaces B: Biointerfaces 04/2010; 76(2):496-504. · 4.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biotechnological approaches to practical production of biological protein-based adhesives have had limited success over the last several decades. Broader efforts to produce recombinant adhesive proteins may have been limited by early disappointments. More recent synthetic polymer approaches have successfully replicated some aspects of natural underwater adhesives. For example, synthetic polymers, inspired by mussels, containing the catecholic functional group of 3,4-L-dihydroxyphenylalanine adhere strongly to wet metal oxide surfaces. Synthetic complex coacervates inspired by the Sandcastle worm are water-borne adhesives that can be delivered underwater without dispersing. Synthetic approaches offer several advantages, including versatile chemistries and scalable production. In the future, more sophisticated mimetic adhesives may combine synthetic copolymers with recombinant or agriculture-derived proteins to better replicate the structural and functional organization of natural adhesives.
    Applied Microbiology and Biotechnology 10/2010; 89(1):27-33. · 3.69 Impact Factor