The Caenorhabditis elegans assay: a tool to evaluate the pathogenic potential of bacterial biocontrol agents

European Journal of Plant Pathology (Impact Factor: 1.71). 11/2009; 125(3):367-376. DOI: 10.1007/s10658-009-9486-3

ABSTRACT Bacterial biocontrol agents (BCAs) open up the possibility of controlling plant pathogens in an environmentally friendly way.
Although they are naturally occurring microbes, some of them can cause diseases in humans. For successful registration it
is necessary to test potentially adverse effects on the human health of at-risk candidates. Existing pathogenicity assays
are cost-intensive, time-consuming and furthermore they are often inappropriate for facultative pathogens. We developed a
new, fast and inexpensive bioassay on the basis of the nematode Caenorhabditis elegans, which is a well-accepted model organism to study bacterial pathogenicity. A selection of eight strains from clinical and
environmental origin as well as potential and commercial BCAs from the genera Bacillus, Pseudomonas, Serratia and Stenotrophomonas were screened for their potential to kill the nematode in an in vitro agar plate assay. Furthermore, the motility and reproductive behaviour of nematodes exposed to strains were tested in comparison
with those fed by the human pathogen Pseudomonas aeruginosa QC14-3-8 (positive control) and the negative control Escherichia coli OP50. Commercial as well as potential biocontrol strains did not display any adverse effects in all tests. In contrast, the
C. elegans assay showed slight effects for clinical and environmental Stenotrophomonas strains. Results showed that the nematode C. elegans provides a model system to indicate the pathogenic potential of BCAs in a very early stage of product development.

  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Certain strains of Pantoea are used as biocontrol agents for the suppression of plant diseases. However, their commercial registration is hampered in some countries because of biosafety concerns. This study compares clinical and plant-beneficial strains of P. agglomerans and related species using a phenotypic analysis approach in which plant-beneficial effects, adverse effects in nematode models, and toxicity were evaluated. Plant-beneficial effects were determined as the inhibition of apple fruit infection by Penicillium expansum and apple flower infection by Erwinia amylovora. Clinical strains had no general inhibitory activity against infection by the fungal or bacterial plant pathogens, as only one clinical strain inhibited P. expansum and three inhibited E. amylovora. By contrast, all biocontrol strains showed activity against at least one of the phytopathogens, and three strains were active against both. The adverse effects in animals were evaluated in the plant-parasitic nematode Meloidogyne javanica and the bacterial-feeding nematode Caenorhabditis elegans. Both models indicated adverse effects of the two clinical strains but not of any of the plant-beneficial strains. Toxicity was evaluated by means of hemolytic activity in blood, and genotoxicity with the Ames test. None of the strains, whether clinical or plant-beneficial, showed any evidence of toxicity. [Int Microbiol 2014; 17(2):81-90] Keywords: Pantoea agglomerans · Erwinia amylovora · Meloidogyne javanica · Penicillium expansum · Caenorhabditis elegans · biocontrol · biosafety · toxicity · hemolytic activity · Ames test
    International Microbiology 09/2014; 1701(2):81-90210. DOI:10.2436/20.1501.01.210 · 1.34 Impact Factor