Analysis of farm performance in Europe under different climatic and management conditions to improve understanding of adaptive capacity

Netherlands Environmental Assessment Agency (RIVM/MNP) P.O. Box 1 3720 BA Bilthoven The Netherlands
Climatic Change (Impact Factor: 3.63). 09/2007; 84(3):403-422. DOI: 10.1007/s10584-007-9242-7

ABSTRACT The aim of this paper is to improve understanding of the adaptive capacity of European agriculture to climate change. Extensive
data on farm characteristics of individual farms from the Farm Accountancy Data Network (FADN) have been combined with climatic
and socio-economic data to analyze the influence of climate and management on crop yields and income and to identify factors
that determine adaptive capacity. A multilevel analysis was performed to account for regional differences in the studied relationships.
Our results suggest that socio-economic conditions and farm characteristics should be considered when analyzing effects of
climate conditions on farm yields and income. Next to climate, input intensity, economic size and the type of land use were
identified as important factors influencing spatial variability in crop yields and income. Generally, crop yields and income
are increasing with farm size and farm intensity. However, effects differed among crops and high crop yields were not always
related to high incomes, suggesting that impacts of climate and management differ by impact variable. As farm characteristics
influence climate impacts on crop yields and income, they are good indicators of adaptive capacity at farm level and should
be considered in impact assessment models. Different farm types with different management strategies will adapt differently.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sustainable intensification of agricultural systems has been suggested – in addition to reducing waste and changing consumption habits – as a way to increase food, feed, fuel, and fiber security in the twenty-first century. Here we describe three primary strategies of agricultural intensification – conventional intensification, temporal intensification, and spatial intensification – and how they can be used to manage and integrate food and second-generation crop portfolios. While each strategy has individual merits, combining them to meet case-specific targets may achieve optimum results. Multiple experiments and examples from the USA and the EU illustrate the potential of combining these approaches for agroecological intensification that can provide ecosystem services while maintaining or increasing economic output, thus striking a balance between ‘land sparing’ and ‘land sharing’. Management strategies will vary by the types of markets available, e.g., food, fuel and/or ecosystem services, and the scale of markets supplied, e.g., small heat and power vs. large cellulosic ethanol. Future research should holistically and methodologically evaluate the trade-offs between different management strategies. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
    Biofuels Bioproducts and Biorefining 11/2013; 7(6). · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The impact of climate change on European agriculture is subject to a significant uncertainty, which reflects the intertwined nature of agriculture. This issue involves a large number of processes, ranging from field to global scales, which have not been fully integrated yet. In this study, we intend to help bridging this gap by quantifying the effect of farm-scale autonomous adaptations in response to changes in climate. To do so, we use a modelling framework coupling the STICS generic crop model to the AROPAj microeconomic model of European agricultural supply. This study provides a first estimate of the role of such adaptations, consistent at the European scale while detailed across European regions. Farm-scale autonomous adaptations significantly alter the impact of climate change over Europe, by widely alleviating negative impacts on crop yields and gross margins. They significantly increase European production levels. However, they also have an important and heterogeneous impact on irrigation water withdrawals, which exacerbate the differences in ambient atmospheric carbon dioxide concentrations among climate change scenarios.
    Ecological Economics 03/2013; 87:1-14. · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Towards 2050, climate change is one of the possible drivers that will change the farming landscape, but market, policy and technological development may be at least equally important. In the last decade, many studies assessed impacts of climate change and specific adaptation strategies. However, adaptation to climate change must be considered in the context of other driving forces that will cause farms of the future to look differently from today’s farms. In this paper we use a historical analysis of the influence of different drivers on farm structure, complemented with literature and stakeholder consultations, to assess future structural change of farms in a region under different plausible futures. As climate change is one of the drivers considered, this study thus puts climate change impact and adaptation into the context of other drivers. The province of Flevoland in the north of The Netherlands was used as case study, with arable farming as the main activity. To account for the heterogeneity of farms and to indicate possible directions of farm structural change, a farm typology was developed. Trends in past developments in farm types were analyzed with data from the Dutch agricultural census. The historical analysis allowed to detect the relative importance of driving forces that contributed to farm structural changes. Simultaneously, scenario assumptions about changes in these driving forces elaborated at global and European levels, were downscaled for Flevoland, to regional and farm type level in order to project impacts of drivers on farm structural change towards 2050. Input from stakeholders was also used to detail the downscaled scenarios and to derive historical and future relationships between drivers and farm structural change. These downscaled scenarios and future driver-farm structural change relationships were used to derive quantitative estimations of farm structural change at regional and farm type level in Flevoland. In addition, stakeholder input was used to also derive images of future farms in Flevoland. The estimated farm structural changes differed substantially between the two scenarios. Our estimations of farm structural change provide a proper context for assessing impacts of and adaptation to climate change in 2050 at crop and farm level
    Landscape Ecology 01/2012; 27(4):509-527. · 2.90 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014