Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials

Shandong University School of Mechanical Engineering Shandong Jinan 250061 P.R. China; Jinan Vocational College Mechanical Engineering Department Shandong Jinan 250103 P.R. China
Bulletin of Materials Science (Impact Factor: 0.87). 01/2008; 31(6):877-884. DOI: 10.1007/s12034-008-0140-z

ABSTRACT Radio frequency (RF) magnetron sputtering is a versatile deposition technique that can produce thin, uniform, dense calcium
phosphate coatings. In this paper, principle and character of magnetron sputtering is introduced, and development of the hydroxyapatite
and its composite coatings application is reviewed. In addition, influence of heat treatment on magnetron sputtered coatings
is discussed. The heat treated coatings have been shown to exhibit bioactive behaviour both in vivo and in vitro. At last, the future application of the bioactive ceramic coating deposited by magnetron sputtering is mentioned.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the fabrication and characterization of Al/Al2O3 nanotubular arrays on Ti-6Al-4V substrate were carried out. To this end, aluminum thin films were deposited as a first coating layer by direct current (DC) magnetron sputtering with the coating conditions of 300 W, 150 °C and 75 V substrate bias voltage. Al2O3 nanotube array as a second layer was grown on the Al layer by electrochemical anodisation at the constant potential of 20 V within different time periods in a electrolyte solution. For annealing the coated substrate, plasma treatment (PT) was utilized under various conditions to get the best adhesion strength of coating to the substrate. To characterize the coating layers, micro scratch test, Vickers hardness and field emission of scanning electron microscopy (FESEM) were used. Results showed that after the deposition of pure aluminum on the substrate the scratch length, load and failure point were 794.37 μm, 1100 mN and 411.43 μm, respectively. After PT, the best adhesion strength (2038 mN) was obtained at RF power of 60 W. With the increase of the RF power from 60 to 80 W, a reduction in adhesion strength was observed (1525.22 mN). From the microstructural point of view, a homogenous porous structure with an average pore size of 40-60 nm was formed after the anodisation for 10-45 min. During PT, the porous structure was converted to dense alumina layer when the RF power rose from 40 to 80 W. This led to an increase in hardness value from 2.7 to 3.4 GPa. Based on the obtained data, the RF power of 60 W was the optimum condition for plasma treatment of Al/Al2O3 nanotubular arrays on Ti-6Al-4V substrate.
    Applied Surface Science 12/2014; · 2.54 Impact Factor
  • Thin Solid Films 04/2013; 547:181. · 1.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied by X-ray diffraction analysis, IR spectroscopy, and scanning electron microscopy (SEM) the phase composition and the structure of coatings based on silicon-containing hydroxyapatite (Si-HA) deposited by RF-magnetron sputtering. The sputtering target contained two phases (apatite and tricalcium phosphate) and was produced by the ceramic technology from a single-phase mechanically activated powder precursor. The structure of the coating deposited by sputtering from the two-phase target was single phase (hydroxyapatite) and textured in the (002) direction. During deposition, silicate anions partially replaced phosphate ions in the apatite lattice.
    Inorganic Materials: Applied Research. 05/2013; 4(3).


Available from