Article

Glass formation in amorphous SiO2 as a percolation phase transition in a system of network defects

JETP Letters (Impact Factor: 1.52). 01/2004; 79(12):632-634. DOI: 10.1134/1.1790021

ABSTRACT Thermodynamic parameters of defects (presumably, defective SiO molecules) in the network of amorphous SiO2 are obtained by analyzing the viscosity of the melt with the use of the Doremus model. The best agreement between the experimental
data on viscosity and the calculations is achieved when the enthalpy and entropy of the defect formation in the amorphous
SiO2 network are H

d
=220 kJ/mol and S

d
=16.13R, respectively. The analysis of the network defect concentration shows that, above the glass-transition temperature (T

g
), the defects form dynamic percolation clusters. This result agrees well with the results of molecular dynamics modeling,
which means that the glass transition in amorphous SiO2 can be considered as a percolation phase transition. Below T

g
, the geometry of the distribution of network defects is Euclidean and has a dimension d=3. Above the glass-transition temperature, the geometry of the network defect distribution is non-Euclidean and has a fractal
dimension of d

f
=2.5. The temperature T

g
can be calculated from the condition that percolation arises in the defect system. This approach leads to a simple analytic
formula for the glass-transition temperature: T

g
=H

d
/((S

d
+1.735R). The calculated value of the glass-transition temperature (1482 K) agrees well with that obtained from the recent measurements
of T

g
for amorphous SiO2 (1475 K).

5 Bookmarks
 · 
636 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Structural biomaterials are hierarchically organized and biofabricated. Although the structural complexity of most bioskeletons can be traced back from the millimeter-scale to the micrometer- or submicrometer-scale, the biological and/or genetic basis controlling the synthesis of these skeletons and their building blocks remained unknown. There is one distinguished example, the spicules of the siliceous sponges, for which the principle molecules and molecular-biological processes involved in their formation have been elucidated in the last few years. In this review, recent data on the different levels of molecular, biological and structural hierarchies controlling the synthesis of the picturesquely and intricately architectured spicules are summarized. The silicateins and their interacting/maturated proteins comprise the basic enzymatic/proteinous machinery that facilitates the polycondensation of silicate to biosilica. Two isoforms of silicatein, silicatein-α and silicatein-β, the enzyme that catalyzes the polymerization of orthosilicate to polymeric biosilica, have been identified. The remarkable feature of these enzymes is that, besides their enzymatic function, they act as structure-giving proteins that provide the platform for the organization of the silica spicules. Silicatein-α together with silicatein-β forms pentameric units that continue to grow in a linear pattern. The silicatein-interacting protein, silintaphin-1, stabilizes the initially formed silicatein fractals, while silintaphin-2 provides Ca2+ ions required for the appositional growth of the spicules. The biosilica formed during the enzymatically driven sol–gel process that is catalyzed by this multi-protein system is a soft, gel-like inorganic polymer. This soft biosilica undergoes a biologically controlled process of syneresis, resulting in a shrinkage of the silica network. During this reaction the biosilica is transformed into an elastic solid and gains the characteristic spicule morphology. A sizeable amount of protein, mostly silicatein, remains embedded in the biosilica material, thus forming a hybrid bioinorganic (“biosilica”) material. The process of syneresis involves the removal of water by cell-membrane-associated aquaporin channels and is guided by collagen bundles. Four cell types, sclerocytes, archaeocytes, chromocytes and lophocytes, participate in this structure-guiding process. In conclusion, this article attempts to overcome the frontiers in the understanding of the different levels of hierarchies, genetic, biological and structural, and to contribute towards the fabrication of new bioinspired functional materials.
    Soft Matter 08/2012; 8(37):9501-9518. · 4.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitrification of nuclear wastes is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting waste form. Vitrification is a mature technology and has been used for high level nuclear waste (HLW) immobilisation for more than 40 years in France, Germany and Belgium, Russia, UK, Japan and the USA. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro-and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material (GCM). Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes, moreover in addition to relatively homogeneous glasses novel GCM are used to immobilise problematic waste streams. The spectrum of wastes which are currently vitrified increases from HLW to low and intermediate wastes (LILW) such as legacy wastes in Hanford, USA and nuclear power plant operational wastes in Russia and Korea.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work k0-INAA (via IAEAk0-software) has been applied on glass samples to determine major, minor and trace element concentration. As many as 50 elements were detected and quantified with 3–5 mg of 0.1 % AuAl comparator monitor (0.1 % gold–99.9 %Alumimum wire). The average concentration of SiO2, Na2O, CaO, Al2O3 and MgO ranged between 76–96 %, 11.15–12.66 %, 5.26–10.71 %, 1.13–2.73 % and 3.51–6.23 % respectively. The relative concentrations of impurity elements; Cr, Fe, Mn and Co determined from the glass samples were used to match the physical appearance (color) of the glass based on general knowledge of colored glass production. The analytical procedure was validated using SRM 610 (glass matrix) and SRM GBW07106 (rock matrix) both as control samples which indicated a relative uncertainty of 15 and 6 % respectively for SRM 610 and SRM GBW07106. The relative sensitivity at which some of the elements were detected in major, minor and trace levels have indicated, that the k0-method in instrumental neutron activation analysis using low power research reactor is a useful technique in glass analysis and could equally be used for forensic and archeological glass characterization.
    Journal of Radioanalytical and Nuclear Chemistry 295(3). · 1.41 Impact Factor

Full-text (2 Sources)

Download
150 Downloads
Available from
Nov 7, 2014
Available from