Article

Antifungal skin bacteria, embryonic survival, and communal nesting in four-toed salamanders, Hemidactylium scutatum

California State University Bakersfield Department of Biology 9001 Stockdale Highway Bakersfield CA 93311-1099 USA
Oecologia (Impact Factor: 3.25). 05/2008; 156(2):423-429. DOI: 10.1007/s00442-008-1002-5

ABSTRACT We examined a novel hypothesis for the maintenance of communal nesting in the salamander, Hemidactylium scutatum, namely that communal nests are more likely than solitary nests to be associated with cutaneous antifungal bacteria, which
can inhibit fungal infections of embryos. A communal nest contains eggs of two or more females of the same species. The nesting
behavior of H. scutatum females and survival of embryos were determined by frequent nest surveys at three ponds. For communal nests, embryonic survival
tended to be higher and catastrophic nest failure was lower. Pure bacterial cultures of resident species were obtained from
the salamanders’ skins by swabbing and tested against a fungal pathogen of embryos (Mariannaea sp.) in laboratory assays. We found that 27% of females had skin bacteria inhibitory to Mariannaea sp. Communal nests were more likely to have at least one female with antifungal bacteria than were solitary nests. Using
a culture-independent assay (denaturing gradient gel electrophoresis of 16S rRNA gene fragments), we found that bacterial
species on females and embryos were more similar to each other than they were to bacterial species found in soil within the
nest, suggesting that females transmitted skin bacteria to embryos. The presence of anti-Mariannaea skin bacteria identified from the laboratory assays did not prevent fungal presence in field nests. However, once a nest
was visibly infected with fungi, presence of anti-Mariannaea bacteria was positively correlated with survival of embryos. Microbe transmission is usually thought to be a cost of group
living, but communal nesting in H. scutatum may facilitate the transmission of antifungal bacteria to embryos.

0 Bookmarks
 · 
135 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amphibians support symbiotic bacterial communities on their skin that protect against a range of infectious pathogens, including the amphibian chytrid fungus. The conditions under which amphibians are maintained in captivity (e.g. diet, substrate, enrichment) in ex situ conservation programmes may affect the composition of the bacterial community. In addition, ex situ amphibian populations may support different bacterial communities in comparison to in situ populations of the same species. This could have implications for the suitability of populations intended for reintroduction, as well as the success of probiotic bacterial inoculations intended to provide amphibians with a bacterial community that resists invasion by the chytrid fungus. We aimed to investigate the effect of a carotenoid-enriched diet on the culturable bacterial community associated with captive red-eyed tree frogs (Agalychnis callidryas) and make comparisons to bacteria isolated from a wild population from the Chiquibul Rainforest in Belize. We successfully showed carotenoid availability influences the overall community composition, species richness and abundance of the bacterial community associated with the skin of captive frogs, with A. callidryas fed a carotenoid-enriched diet supporting a greater species richness and abundance of bacteria than those fed a carotenoid-free diet. Our results suggest that availability of carotenoids in the diet of captive frogs is likely to be beneficial for the bacterial community associated with the skin. We also found wild A. callidryas hosted more than double the number of different bacterial species than captive frogs with very little commonality between species. This suggests frogs in captivity may support a reduced and diverged bacterial community in comparison to wild populations of the same species, which could have particular relevance for ex situ conservation projects.
    PLoS ONE 01/2014; 9(1):e85563. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the importance of ex situ conservation programmes as highlighted in the Amphibian Conservation Action Plan, there are few empirical studies that examine the influence of captive conditions on the fitness of amphibians, even for basic components of enclosure design such as cover provision. Maintaining the fitness of captive amphibian populations is essential to the success of ex situ conservation projects. Here we examined the impact of plant cover on measures of fitness and behaviour in captive red-eyed tree frogs (Agalychnis callidryas). We found significant effects of plant provision on body size, growth rates and cutaneous bacterial communities that together demonstrate a compelling fitness benefit from cover provision. We also demonstrate a strong behavioural preference for planted rather than non-planted areas. We also assessed the impact of plant provision on the abiotic environment in the enclosure as a potential driver of these behavioural and fitness effects. Together this data provides valuable information regarding enclosure design for a non-model amphibian species and has implications for amphibian populations maintained in captivity for conservation breeding programmes and research.
    PLoS ONE 04/2014; 9(4):e95207. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animals live in a bacterial world and detecting and exploring adaptations favouring mutualistic relationships with antibiotic producing bacteria as a strategy to fight pathogens is of prime importance for evolutionary ecologists.Uropygial secretion of European hoopoes (Upupa epops, Linnaeus) contains antimicrobials from mutualistic bacteria that may be used to prevent embryo infection. Here, we investigated the microscopic structure of hoopoe eggshells looking for special features favouring the adhesion of antimicrobial uropygial secretions.We impeded female access to the uropygial gland and compared microscopic characteristics of eggshells, bacterial loads of eggs and of uropygial secretion, and hatching success of experimental and control females. Then, we explored the link between microbiological characteristics of uropygial secretion and these of eggs of hoopoes, as well as possible fitness benefits.The microscopic study revealed special structures in hoopoes’ eggshells (crypts). The experimental prevention of females′ gland access demonstrated that crypts are filled with uropygial secretion and that symbiotic enterococci bacteria on the eggshells come, at least partially, from those in the female's uropygial gland. Moreover, the experiment resulted in a higher permeability of eggshells by several groups of bacteria and in elimination of the positive relationships detected for control nests between hatching success and density of symbiotic bacteria, either in the uropygial secretion of females or on the eggshell.The findings of specialized crypts on the eggshells of hoopoes, and of video recorded females smearing secretion containing symbiotic bacteria at a high density onto the eggshells strongly support a link between secretion and bacteria on eggs. Moreover, the detected associations between bacteria and hatching success suggest that crypts enhancing the adhesion of symbiont-carrying uropygial secretion likely protect embryos against infections.This article is protected by copyright. All rights reserved.
    Journal of Animal Ecology 04/2014; · 4.73 Impact Factor

Full-text

Download
2 Downloads
Available from
Feb 9, 2015