Article

Release of cationic drugs from loaded clay minerals

University of Szeged, Algyő, Csongrád, Hungary
Colloid and Polymer Science (Impact Factor: 2.41). 11/2001; 279(12):1177-1182. DOI: 10.1007/s003960100527

ABSTRACT The adsorption of promethazine chloride [10-(2-dimethylammonium propyl) fenothiazine chloride] and buformin hydrochloride
(1-butylbiguanidine chloride) on montmorillonite was studied in previous work. The present article focuses on the desorption
of these molecules from their organocomplexes in a medium of artificial intestinal juice (pH 7.0 ± 0.1) at the temperature
of the human body (37 ± 0.5 °C). The desorption was investigated by kinetic studies, basal spacing measurements and Fourier
transform IR studies. Important quantitative differences were observed: buformin, which adsorbed in a monolayer coverage,
exhibited a very high desorption rate, whereas promethazine formed a pseudotrilayer arrangement and showed a lower dissolution
rate.

0 Followers
 · 
61 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anionic surfactant sodium dodecyl sulfate (SDS), cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and acrylic acid (AA) were introduced as molecular models to study the interaction between montmorillonite and organic molecules with different charge or chain length. The compounds were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and 13C nuclear magnetic resonance (13C NMR). The results show organic anion could interact strongly with montmorillonite, even the molecules could intercalate into the layers of MMT.
    Journal of Wuhan University of Technology-Mater Sci Ed 02/2013; 28(1). DOI:10.1007/s11595-013-0630-8 · 0.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work examined two drug delivery systems: the first system studied the adsorption of Verapamil hydrochloride drug into montmorillonite clay (MMT) by intercalation process to prepare MMT-Verapamil hybrid at different intercalating time, temperatures, pH values and initial drug concentrations. The second system includes the preparation of MMT-Verapamil hybrid combined with polymethyl methacrylate via an emulsion polymerization process to produce a novel nanocomposite material to be used in drug delivery. The polymerization process was carried out using an ultrasonic technique to achieve a biologically safe drug delivery system. Best conditions for the intercalation of verapamil hydrochloride drug into the interlayer of MMT clay were found to be at 50°C and 1 hr using pH ranges of 4–6. The prepared MMT-Verapamil hybrid and the produced MMT-verapamil-MMA nanocomposite material were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and thermal gravimetric analysis (TGA). The in-vitro release profile of Verapamil in the case of a drug hybrid is faster than the release in the case of a drug nanocomposite in both gastric and intestinal fluids where, in the case of gastric fluid (pH 1.2), about 40% of the loaded drug was released from the drug hybrid in the first 4 h against only 37% in 5 h in the case of drug nanocomposite. Also in the intestinal fluid (pH 7.4), the verapamil release from drug hybrid reached 68% in 5 h against only 57% was released from drug nanocomposites in 7 h.
    Polymer-Plastics Technology and Engineering 10/2014; 53(14). DOI:10.1080/03602559.2014.909462 · 1.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New microbicidal polyamides were prepared by the reaction of 5-phenyl-1,3,4,-oxadiazole-2-thiol, 5-phenyl-1,3,4-oxadiazole-2-amine, and 5-(4-chlorophenyl)−1,3,4-thiadiazole-2-thiol with ethyl chloroformate followed by polycondensation with polyoxypropylenetriamine (Jeffamine T403). The polyamides were modified to yield amine hydrochloride. The intercalation of polyamides into montmorillonite (MMT) was achieved through an ion exchange process between sodium cations in MMT and amine hydrochloride in the polyamides. The structure of the resulting materials was characterized with elemental analysis, proton nuclear magnetic resonance, Fourier transform infrared-spectroscopy, X-ray diffraction, thermogravimetric analysis, and transmission electron microscope. The release behavior of 1,3,4-oxa(thia)diazoles was investigated in buffered aqueous solution at different pH values (2.3, 5.8, and 7.4). A slow release was recorded from the nanocomposites whereas; the release reaches almost 90% from polyamides. The in vitro antimicrobial activity of the polyamides and nanocomposites was studied against Gram-negative bacteria, Gram-positive bacteria, Yeast and the filamentous fungi by well diffusion method. The polymers showed good or moderate antimicrobial activities. However, nanocomposites showed no antimicrobial effect. Furthermore, in vivo study showed that nanocomposites had good antimicrobial activity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 41177.
    Journal of Applied Polymer Science 07/2014; 131(23). DOI:10.1002/app.41177 · 1.64 Impact Factor