Establishment of a new continuous cell line of Drosophila melanogaster strain infected by the intracellular endosymbiotic bacterium Wolbachia pipientis under natural conditions

Russian Journal of Genetics (Impact Factor: 0.43). 01/2010; 46(1):9-12. DOI: 10.1134/S1022795410010023

ABSTRACT Wolbachia pipientis is an obligately intracellular bacterium infecting a number of arthropod and nematode species. At the body level, Wolbachia infection may cause parthenogenesis, feminization of genetic males, male killing, or cytoplasmic incompatibility; it may
also be asymptomatic. Of special interest is DNA transfer from Wolbachia to the host insect genome, which was discovered recently. At the cellular level, the effects caused by Wolbachia have been studied more poorly. Only one of the known insect cell lines has been obtained from an insect species (the mosquito
Aedes albopictus) infected by Wolbachia. In this study, a continuous cell line Dm2008Wb1 has been obtained from embryos of Drosophila melanogaster infected under natural conditions. Wolbachia both persists in a primary cell culture and is retained upon its transformation into a continuous culture. The presence of
this bacterium in cells in a free form is evidenced by the fact that tetracycline treatment can cure the cells of Wolbachia and by successful transfer of Wolbachia to another cell line (S2), where it has not been detected before.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The alpha-proteobacterium Wolbachia pipientis is a very common cytoplasmic symbiont of insects, crustaceans, mites, and filarial nematodes. To enhance its transmission, W. pipientis has evolved a large scale of host manipulations: parthenogenesis induction, feminization, and male killing. W. pipientis's most common effect is a crossing incompatibility between infected males and uninfected females. Little is known about the genetics and biochemistry of these symbionts because of their fastidious requirements. The affinity of W. pipientis for the microtubules associated with the early divisions in eggs may explain some of their effects. Such inherited microorganisms are thought to have been major factors in the evolution of sex determination, eusociality, and speciation. W. pipientis isolates are also of interest as vectors for the modification of wild insect populations, in the improvement of parasitoid wasps in biological pest control, and as a new method for interfering with diseases caused by filarial nematodes.
    Annual Review of Microbiology 02/1999; 53:71-102. · 12.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The maternally inherited intracellular symbiont Wolbachia pipientis is well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts it infects. It has been implicated in causing cytoplasmic incompatibility, parthenogenesis, and the feminization of genetic males in different hosts. The molecular mechanisms by which this fastidious intracellular bacterium causes these reproductive and developmental abnormalities have not yet been determined. In this paper, we report on (i) the purification of one of the most abundantly expressed Wolbachia proteins from infected Drosophila eggs and (ii) the subsequent cloning and characterization of the gene (wsp) that encodes it. The functionality of the wsp promoter region was also successfully tested in Escherichia coli. Comparison of sequences of this gene from different strains of Wolbachia revealed a high level of variability. This sequence variation correlated with the ability of certain Wolbachia strains to induce or rescue the cytoplasmic incompatibility phenotype in infected insects. As such, this gene will be a very useful tool for Wolbachia strain typing and phylogenetic analysis, as well as understanding the molecular basis of the interaction of Wolbachia with its host.
    Journal of Bacteriology 05/1998; 180(9):2373-8. · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adzuki bean beetle, Callosobruchus chinensis, is triple-infected with distinct lineages of Wolbachia endosymbiont, wBruCon, wBruOri, and wBruAus, which were identified by their wsp (Wolbachia surface protein) gene sequences. Whereas wBruCon and wBruOri caused cytoplasmic incompatibility of the host insect, wBruAus did not. Although wBruCon and wBruOri were easily eliminated by antibiotic treatments, wBruAus persisted over five treated generations and could not be eliminated. The inheritance pattern of wBruAus was, surprisingly, explained by sex-linked inheritance in male-heterozygotic organisms, which agreed with the karyotype of C. chinensis (2n = 20, XY). Quantitative PCR analysis demonstrated that females contain around twice as much wsp titer as males, which is concordant with an X chromosome linkage. Specific PCR and Southern blot analyses indicated that the wBruAus-bearing strain of C. chinensis contains only a fraction of the Wolbachia gene repertoire. Several genome fragments of wBruAus were isolated using an inverse PCR technique. The fragments exhibited a bacterial genome structure containing a number of ORFs typical of the alpha-proteobacteria, although some of the ORFs contained disruptive mutations. In the flanking region of ftsZ gene, a non-long terminal repeat (non-LTR) retrotransposon sequence, which is typical of insects but not found from bacteria, was present. These results strongly suggest that wBruAus has no microbial entity but is a genome fragment of Wolbachia endosymbiont transferred to the X chromosome of the host insect.
    Proceedings of the National Academy of Sciences 11/2002; 99(22):14280-5. · 9.81 Impact Factor