Article

Nickel Nanoparticles Enhance Platelet-Derived Growth Factor-Induced Chemokine Expression by Mesothelial Cells via Prolonged Mitogen-Activated Protein Kinase Activation.

P.O. Box 7633, North Carolina State University, Raleigh, NC 27695-7633. .
American Journal of Respiratory Cell and Molecular Biology (Impact Factor: 4.11). 06/2012; 47(4):552-61. DOI: 10.1165/rcmb.2012-0023OC
Source: PubMed

ABSTRACT Pleural diseases (fibrosis and mesothelioma) are a major concern for individuals exposed by inhalation to certain types of particles, metals, and fibers. Increasing attention has focused on the possibility that certain types of engineered nanoparticles (NPs), especially those containing nickel, might also pose a risk for pleural diseases. Platelet-derived growth factor (PDGF) is an important mediator of fibrosis and cancer that has been implicated in the pathogenesis of pleural diseases. In this study, we discovered that PDGF synergistically enhanced nickel NP (NiNP)-induced increases in mRNA and protein levels of the profibrogenic chemokine monocyte chemoattractant protein-1 (MCP-1 or CCL2), and the antifibrogenic IFN-inducible CXC chemokine (CXCL10) in normal rat pleural mesothelial 2 (NRM2) cells in vitro. Carbon black NPs (CBNPs), used as a negative control NP, did not cause a significant increase in CCL2 or CXCL10 in the absence or presence of PDGF. NiNPs prolonged PDGF-induced phosphorylation of the mitogen-activated protein kinase family termed extracellular signal-regulated kinases (ERK)-1 and -2 for up to 24 hours, and NiNPs also synergistically increased PDGF-induced hypoxia-inducible factor (HIF)-1α protein levels in NRM2 cells. Inhibition of ERK-1,2 phosphorylation with the mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, blocked the synergistic increase in CCL2, CXCL10, and HIF-1α levels induced by PDGF and NiNPs. Moreover, the antioxidant, N-acetyl-L-cysteine (NAC), significantly reduced HIF-1α, ERK-1,2 phosphorylation, and CCL2 protein levels that were synergistically increased by the combination of PDGF and NiNPs. These data indicate that NiNPs enhance the activity of PDGF in regulating chemokine production in NRM2 cells through a mechanism involving reactive oxygen species generation and prolonged activation of ERK-1,2.

Download full-text

Full-text

Available from: James C Bonner, Jul 28, 2015
0 Followers
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SUS316L stainless steel and cobalt–chromium and platinum–chromium alloys are widely used platforms for coronary stents. These alloys also contain nickel (Ni), which reportedly induces allergic reactions in some subjects and is known to have various cellular effects. The effects of Ni on neointima formation after stent implantation remain unknown, however. We developed coronary stents made of Ni-free high-nitrogen austenitic stainless steel prepared using a N2-gas pressurized electroslag remelting (P-ESR) process. Neointima formation and inflammatory responses following stent implantation in porcine coronary arteries were then compared between the Ni-free and SUS316L stainless steel stents. We found significantly less neointima formation and inflammation in arteries implanted with Ni-free stents, as compared to SUS316L stents. Notably, Ni2+ was eluted into the medium from SUS316L but not from Ni-free stainless steel. Mechanistically, Ni2+ increased levels of hypoxia inducible factor protein-1α (HIF-1α) and its target genes in cultured smooth muscle cells. HIF-1α and their target gene levels were also increased in the vascular wall at SUS316L stent sites but not at Ni-free stent sites. The Ni-free stainless steel coronary stent reduces neointima formation, in part by avoiding activation of inflammatory processes via the Ni-HIF pathway. The Ni-free-stainless steel stent is a promising new coronary stent platform.
    Science and Technology of Advanced Materials 12/2012; 13(6):064218. DOI:10.1088/1468-6996/13/6/064218 · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles (NP) possess remarkable adjuvant and carrier capacity, therefore are used in the development of various vaccine formulations. Our previous studies demonstrated that inert non-toxic 40-50 nm polystyrene NP (PS-NP) can promote strong CD8 T cell and antibody responses to the antigen, in the absence of observable inflammatory responses. Furthermore, instillation of PS-NP inhibited the development of allergic airway inflammation by induction of an immunological imprint via modulation of dendritic cell (DC) function without inducing oxidative stress in the lungs in mice. This is in contrast to many studies which show that a variety of ambient and man-made NP promote lung immunopathology, raising concerns generally about the safe use of NPs in biomedicine. Most NPs are capable of inducing inflammatory pathways in DC largely mediated by signalling via the extracellular signal-regulated kinase 1/2 (ERK). Herein, we investigate whether PS-NPs also activate ERK in DC in vitro. Our data show that PS-NP do not induce ERK activation in two different types of bone marrow derived (BM) DC cultures (expanded with GM-CSF or with GM-CSF together with IL-4). The absence of such signalling was not due to lack of PS-NP uptake by BM-DC as confirmed by confocal microscopy and flow cytometry. The process of NP uptake by DC usually initiates ERK signalling, suggesting an unusual uptake pathway may be engaged by PS-NPs. Indeed, data herein showns that uptake of PS-NP by BM-DC was substantially inhibited by phorbol myristate acetate (PMA) but not cytochalasin D (CCD), suggesting an uptake pathway utilising caveole for PS-NP. Together these data show that BM-DC take up PS-NP via a caveole-dependent pathway which does not trigger ERK signalling which may explain their efficient uptake by DC, without the concomitant activation of conventional inflammatory pathways.
    Methods 02/2013; 60(3). DOI:10.1016/j.ymeth.2013.02.009 · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Numerous epidemiological studies have linked exposure to particulate matter (PM) air pollution with acute respiratory infection and chronic respiratory and cardiovascular diseases. We have previously shown that soluble nickel (Ni), a common component of PM, alters the release of CXC chemokines from cultured human lung fibroblasts (HLF) in response to microbial stimuli, via a pathway dependent on disrupted prostaglandin (PG) E2 signaling. The current study sought to identify the molecular events underlying Ni-induced alterations in PGE2 signaling and its effects on IL8 production. PGE2 synergistically enhances Ni-induced IL8 release from HLF in a concentration-dependent manner. The effects of PGE2 were mimicked by butaprost and prostaglandin E1-alcohol and inhibited with antagonists AH6809 and L-161,982, indicating PGE2 signals via Prostaglandin E2 receptors 2 and 4. PGE2 and forskolin stimulated cAMP, but it was only in the added presence of Ni-induced HIF1A that these agents stimulated IL8 release. The Ni-induced HIF1A DNA binding was enhanced by PGE2 and mediated, in part, by activation of p38 MAPK. Negation of either cAMP responsive element binding protein 1 (CREB1) or hypoxia inducible factor 1, alpha subunit (HIF1A) using siRNA blocked the synergistic interactions between Ni and PGE2. The results of the current study provide novel information on the ability atmospheric hypoxia-mimetic metals to modulate the release of immune-modulating chemokines by HLF in response to PGE2. Moreover, in the presence of HIF1A, cAMP-mediated signaling pathways may be altered to exacerbate inflammatory-like processes in lung tissue, imparting a susceptibility of PM exposed populations to adverse respiratory health effects.
    American Journal of Respiratory Cell and Molecular Biology 03/2013; DOI:10.1165/rcmb.2012-0297OC · 4.11 Impact Factor
Show more