Article

Early Presynaptic and Postsynaptic Calcium Signaling Abnormalities Mask Underlying Synaptic Depression in Presymptomatic Alzheimer's Disease Mice

Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois 60064, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 06/2012; 32(24):8341-53. DOI: 10.1523/JNEUROSCI.0936-12.2012
Source: PubMed

ABSTRACT Alzheimer's disease (AD)-linked presenilin (PS) mutations result in pronounced endoplasmic reticulum calcium disruptions that occur before detectable histopathology and cognitive deficits. More subtly, these early AD-linked calcium alterations also reset neurophysiological homeostasis, such that calcium-dependent presynaptic and postsynaptic signaling appear functionally normal yet are actually operating under aberrant calcium signaling systems. In these 3xTg-AD mouse brains, upregulated ryanodine receptor (RyR) activity is associated with a shift toward synaptic depression, likely through a reduction in presynaptic vesicle stores and increased postsynaptic outward currents through small-conductance calcium-activated potassium SK2 channels. The deviant RyR-calcium involvement in the 3xTg-AD mice also compensates for an intrinsic predisposition for hippocampal long-term depression (LTD) and reduced long-term potentiation (LTP). In this study, we detail the impact of disrupted RyR-mediated calcium stores on synaptic transmission properties, LTD, and calcium-activated membrane channels of hippocampal CA1 pyramidal neurons in presymptomatic 3xTg-AD mice. Using electrophysiological recordings in young 3xTg-AD and nontransgenic (NonTg) hippocampal slices, we show that increased RyR-evoked calcium release in 3xTg-AD mice "normalizes" an altered synaptic transmission system operating under a shifted homeostatic state that is not present in NonTg mice. In the process, we uncover compensatory signaling mechanisms recruited early in the disease process that counterbalance the disrupted RyR-calcium dynamics, namely increases in presynaptic spontaneous vesicle release, altered probability of vesicle release, and upregulated postsynaptic SK channel activity. Because AD is increasingly recognized as a "synaptic disease," calcium-mediated signaling alterations may serve as a proximal trigger for the synaptic degradation driving the cognitive loss in AD.

0 Followers
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the initial events of Alzheimer's disease (AD) are still not known, it is clear that the disease in its sporadic form results from the combination of genetic and environmental risk factors. Among the latter, behavioral stress has been increasingly recognized as an important factor in the propagation of AD. However, the mechanisms underlying this modulation remain to be fully investigated. Since stress up-regulates the ALOX5 gene product, 5-lipoxygenase (5LO), herein we investigated its role in modulating stress-dependent development of the AD phenotype. To reach this goal, triple transgenic (3xTg) mice and 3xTg genetically deficient for 5LO where investigated after undergoing a restraint/isolation paradigm. In the present paper we found that 28 days of restraint/isolation stress worsened tau phosphorylation and solubility, increased glycogen synthase kinase 3 beta activity, compromised long-term potentiation, and impaired fear-conditioned memory recall in 3xTg animals, but not in 3xTg animals lacking 5LO (3xTg/5LO-/-). These results highlight the novel functional role that the ALOX5 gene plays in the development of the biochemical, electrophysiological and behavioral sequelae of stress in the AD context. They provide critical support that this gene and its expressed protein are viable therapeutic targets to prevent the onset or delay the progression of AD in individuals exposed to this risk factor.
    Human Molecular Genetics 08/2014; 23(25). DOI:10.1093/hmg/ddu412 · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD). These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic-pituitary-adrenal (HPA)-axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioral deficits and/or mood disorders. Dysregulation of the HPA-axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, antidepressant drugs, such as the selective serotonin reuptake inhibitors have been shown to alter HPA-axis activity. In this review, we will summarize the current state of knowledge regarding HPA-axis pathology in Alzheimer's, PD and HD, differentiating between prodromal and later stages of disease progression when evidence is available. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the preclinical evidence to better inform prospective, intervention studies.
    Frontiers in Psychiatry 01/2015; 6:32. DOI:10.3389/fpsyt.2015.00032
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GluN2B subunit containing NMDARs (GluN2B-NMDARs) mediate pathophysiological effects of acutely applied Amyloid Beta (Aβ), including impaired long-term potentiation (LTP). However, in transgenic Alzheimer's disease (AD) mouse models which feature gradual Aβ accumulation, the function of GluN2B-NMDARs and their contribution to synaptic plasticity are unknown. Therefore, we examined the role of GluN2B-NMDARs in synaptic function and plasticity in the hippocampus of PS2APP transgenic mice. Although LTP induced by theta burst stimulation (TBS) was normal in PS2APP mice, it was significantly reduced by the selective GluN2B-NMDAR antagonist Ro25-6981 (Ro25) in PS2APP mice, but not wild type (wt) mice. While NMDARs activated by single synaptic stimuli were not blocked by Ro25, NMDARs recruited during burst stimulation showed larger blockade by Ro25 in PS2APP mice. Thus, the unusual dependence of LTP on GluN2B-NMDARs in PS2APP mice suggests that non-synaptic GluN2B-NMDARs are activated by glutamate that spills out of synaptic cleft during the burst stimulation used to induce LTP. While long-term depression (LTD) was normal in PS2APP mice, and Ro25 had no impact on LTD in wt mice, Ro25 impaired LTD in PS2APP mice, again demonstrating aberrant GluN2B-NMDAR function during plasticity. Together these results demonstrate altered GluN2B-NMDAR function in a model of early AD pathology that has implications for the therapeutic targeting of NMDARs in AD. Copyright © 2014. Published by Elsevier Inc.
    Neurobiology of Disease 12/2014; DOI:10.1016/j.nbd.2014.11.017 · 5.20 Impact Factor

Full-text

Download
32 Downloads
Available from
May 21, 2014