Amino acid residues in the non-structural protein 1 of porcine reproductive and respiratory syndrome virus involved in down-regulation of TNF-α expression in vitro and attenuation in vivo.

School of Veterinary Medicine & Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583, USA.
Virology (Impact Factor: 3.35). 06/2012; 432(2):241-9. DOI: 10.1016/j.virol.2012.05.014
Source: PubMed

ABSTRACT Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses tumor necrosis factor-alpha (TNF-α) production at both transcriptional and post-transcriptional levels by its non-structural proteins 1α and 1β (Nsp1α and Nsp1β). To identify the amino acid residues responsible for this activity, we generated several alanine substitution mutants of Nsp1α and Nsp1β. Examination of the mutant proteins revealed that Nsp1α residues Gly90, Asn91, Arg97, Arg100 and Arg124 were necessary for TNF-α promoter suppression, whereas several amino acids spanning the entire Nsp1β were found to be required for this activity. Two mutant viruses, with mutations at Nsp1α Gly90 or Nsp1β residues 70-74, generated from infectious cDNA clones, exhibited attenuated viral replication in vitro and TNF-α was found to be up regulated in infected macrophages. In infected pigs, the Nsp1β mutant virus was attenuated in growth. These studies provide insights into how PRRSV evades the effector mechanisms of innate immunity during infection.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Simian hemorrhagic fever virus (SHFV) causes a fatal hemorrhagic fever in macaques but asymptomatic, persistent infections in baboons. To investigate factors contributing to this differential infection outcome, the targets of SHFV infection, macrophages (MΦs) and myeloid dendritic cells (mDCs), were differentiated from macaque and baboon peripheral blood monocytes and used to compare viral replication and cell responses. SHFV replicated in >90% of macaque MΦs but in only ∼10% of baboon MΦs. Although SHFV infected ∼50% of macaque and baboon mDCs, virus replication was efficient in macaque but not in baboon mDCs. Both types of macaque cultures produced higher virus yields than baboon cultures. A more efficient type I interferon response and the production of pro-inflammatory cytokines, including IL-1β, IL-6, IL-12/23(p40), TNF-α and MIP-1α, in response to SHFV infection were observed in macaque but not baboon cultures suggesting less efficient counteraction of these responses by viral proteins in macaque cells. Baboon cultures produced higher levels of IL-10 than macaque cultures both prior to and after SHFV infection. In baboon but not macaque cell cultures, SHFV infection upregulated IL-10R1, a subunit of the IL-10 receptor, and also SOCS3, a negative regulator of pro-inflammatory cytokine production. Incubation of macaque cultures with human IL-10 before and/or after SHFV infection decreased production of IL-6, IL-1β and MIP-1α but not TNF-α suggesting a role for IL-10 in suppressing SHFV induced pro-inflammatory cytokine production in macaques.
    Journal of Virology 12/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DIVA (differentiating infected from vaccinated animals) vaccines have proven extremely useful for control and eradication of infectious diseases in livestock. We describe here the characterization of a serologic marker epitope, so-called epitope-M201, which can be a potential target for development of a live-attenuated DIVA vaccine against porcine reproductive and respiratory syndrome virus (PRRSV). Epitope-M201 is located at the carboxyl terminus (residues 161-174) of the viral M protein. The epitope is highly immunodominant and well-conserved among type-II PRRSV isolates. Rabbit polyclonal antibodies prepared against this epitope are non-neutralizing; thus, the epitope does not seem to contribute to the protective immunity against PRRSV infection. Importantly, the immunogenicity of epitope-M201 can be disrupted through the introduction of a single amino acid mutation which does not adversely affect the viral replication. All together, our results provide an important starting point for the development of a live-attenuated DIVA vaccine against type-II PRRSV.
    Vaccine 07/2013; · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) impairs local pulmonary immune responses by damaging the mucociliary transport system, impairing the function of porcine alveolar macrophages andinducing apoptosis of immune cells. An imbalance between pro- and anti-inflammatory cytokines, including tumour necrosis factor-α and interleukin-10, in PRRS may impair the immune response of the lung. Pulmonary macrophage subpopulations have a range of susceptibilities to different PRRSV strains and different capacities to express cytokines. Infection with PRRSV decreases the bactericidal activity of macrophages, which increases susceptibility to secondary bacterial infections. PRRSV infection is associated with an increase in concentrations of haptoglobin, which may interact with the virus receptor (CD163) and induce the synthesis of anti-inflammatory mediators. The balance between pro- and anti-inflammatory cytokines modulates the expression of CD163, which may affect the pathogenicity and replication of the virus in different tissues. With the emergence of highly pathogenic PRRSV, there is a need for more information on the immunopathogenesis of different strains of PRRS, particularly to develop more effective vaccines.
    The Veterinary Journal 12/2012; · 2.42 Impact Factor


Available from
May 30, 2014

Similar Publications