Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor

Department of Basic Medical Sciences, School of Medicine, University of Missouri, 2411 Holmes Street, Kansas City, MO 64108, USA.
Lipids in Health and Disease (Impact Factor: 2.22). 06/2012; 11(1):76. DOI: 10.1186/1476-511X-11-76
Source: PubMed


Altered immune function during ageing results in increased production of nitric oxide (NO) and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, δ-tocotrienol, and riboflavin) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-κB activation and NO, TNF-α, IL-6, IL-1β, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice.
The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P < 0.02) in the activities of chymotrypsin-like, trypsin-like, and post-acidic (post-glutamase) proteasome sites in RAW 264.7 cells at a dose of only 20 μM. These compounds also inhibited the production of NO by RAW-264.7 cells stimulated with LPS alone (>40%; P < 0.05), or LPS + interferon-γ (IFN-γ; >60%; P < 0.02). Furthermore, resveratrol, pterostilbene, morin hydrate, and quercetin suppressed secretion of TNF-α (>40%; P < 0.05) in LPS-stimulated RAW 264.7 cells, and suppressed NF-κB activation (22% to 45%; P < 0.05) in LPS-stimulated HEK293T cells. These compounds also significantly suppressed LPS-induced expression of TNF-α, IL-1β, IL-6, and iNOS genes in RAW 264.7 cells, and also in thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice.
The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production of inflammatory products in LPS-stimulated RAW 264.7 cells, and macrophages from C57BL/6 and BALB/c mice. Resveratrol and pterostilbene which are present in grapes, blueberries, and red wine, have been implicated as contributing factors to the lower incidence of cardiovascular disease in the French population, despite their relatively high dietary fat intake. Consequently, it appears likely that the beneficial nutritional effects of resveratrol and pterostilbene are due at least in part, to their ability to inhibit NF-κB activation by the proteasome, thereby suppressing activation of pro-inflammatory cytokines and iNOS genes, resulting in decreased secretion of TNF-α, IL-1β, IL-6, and NO levels, in response to inflammatory stimuli. This is the first report demonstrating that resveratrol and pterostilbene act as proteasome inhibitors, thus providing a mechanism for their anti-inflammatory effects.

Download full-text


Available from: Nilofer Qureshi, Professor, Oct 05, 2015
12 Reads
  • Source
    • "required for F508-CFTR correction [35]. Recently, resveratrol has received broad interest due to its antioxidant, antimutagenic, anti-inflammatory and chemoprotective properties [36] [37]; and like curcumin is readily available in many Health Food stores. Resveratrol has also been reported to have beneficial effects on the activity of mutant CFTR [10] [11] [12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Resveratrol, a natural phenolic compound, has been reported to rescue mutant ΔF508 CFTR in expression systems and primary epithelial cells. Although this implies a therapeutic benefit to patients with CF, investigations were performed using resveratrol concentrations greatly in excess of those achievable in plasma. We evaluated the efficacy of resveratrol as a CFTR corrector in relevant primary airway cells, using physiologically achievable resveratrol concentrations. Cells expressing wt or ΔF508 CFTR were exposed to chronic or acute resveratrol. CFTR mRNA and protein expression were monitored. The effects of resveratrol on primary ΔF508 human airway cells were evaluated by equivalent current analysis using modified Ussing chambers. Consistent with previously published data in heterologous expression systems, high doses of resveratrol increased CFTR expression; however physiologically relevant concentrations were without effect. In contrast to heterologous expression systems, resveratrol was unable to increase mutant CFTR channel activity in primary airway cells. Elevated amiloride-sensitive currents, indicative of sodium transport and characteristically elevated in CF airway cells, were also unaffected by resveratrol. High concentrations of resveratrol can increase CFTR mRNA and protein in some cell types. In addition, acute resveratrol exposure can stimulate CFTR mediated chloride secretion, probably by increasing cellular cAMP levels. Resveratrol at physiologically achievable levels yielded no benefit in primary ΔF508 airway cells, either in terms of amiloride-sensitive currents of CFTR currents. Taken together, our results do not support the use of resveratrol supplements as a therapy for patients with cystic fibrosis. It is possible that further modifications of the resveratrol backbone would yield a more efficacious compound. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta 09/2015; DOI:10.1016/j.bbagen.2015.08.020 · 4.66 Impact Factor
    • "Although doxorubicin was shown to increase protein ubiquitination, an observation paralleled by elevation of protein abundance of MAFbx and MuRF-1 in the heart (Sishi et al. 2013), the present study further demonstrates that resveratrol prevents the up-regulation of protein ubiquitination induced by doxorubicin in hearts from old-age mice. Indeed, previous studies have shown that resveratrol inhibits the total protein degradation induced by phorbol ester in C2C12 myotubes (Wyke & Tisdale 2006) and proteasomal chymotrypsin-like activity in cultured murine macrophages (Qureshi et al. 2012). In the present study, we demonstrate that inhibition of SIRT1 by sirtinol or EX527 reversed the resveratrol-induced suppression of protein ubiquitination and proteasomal activity in the aged heart challenged with doxorubicin. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Key points: Doxorubicin induced functional deteriorations and elevations of USP7-related apoptotic/catabolic signalling in the senescent heart Resveratrol protects against doxorubicin-induced alterations through the restoration of SIRT1 deacetylase activity Abstract: A compromised cardiac function is often seen in elderly cancer patients receiving doxorubicin therapy. The present study tested the hypothesis that acute intervention with resveratrol, a natural anti-oxidant found in grapes and red wine, reduces the cardiotoxicity of doxorubicin through restoration of sirtuin 1 (SIRT1) deacetylase activity, and attenuation of the catabolic/apoptotic pathways orchestrated by USP7, a p53 deubiquitinating protein, using young (aged 2 months) and old (aged 10 months) senescence-accelerated mice prone 8 (SAMP8). Animals were randomised to receive saline, doxorubicin, and doxorubicin in combination with resveratrol, in the presence or absence of SIRT1 inhibitors, sirtinol or EX527. Resveratrol alone, but not in combination with either of the SIRT1 inhibitors, suppressed the doxorubicin-induced impairment of cardiac systolic function in aged animals. Doxorubicin reduced SIRT1 deacetylase activity, and elevated proteasomal activity and USP7; it also increased the protein level of p300 and ubiquitinated proteins in hearts from aged SAMP8. These doxorubicin-induced alterations were prevented by resveratrol, whereas the protective action of resveratrol was antagonised by sirtinol and EX527. In young SAMP8 hearts, resveratrol attenuated the doxorubicin-induced increases in acetylation of Foxo1 and transactivation of MuRF-1, whereas these mitigations were not found after treatment with SIRT1 inhibitors. However, the protein contents of acetylated Foxo1 and MuRF-1 were not affected by any of the drugs studied in aged SAMP8 hearts. Resveratrol also ameliorated the augmentation of pro-apoptotic markers including p53, Bax, caspase 3 activity and apoptotic DNA fragmentation induced by doxorubicin in hearts from aged animals, whereas these reductions were diminished by combined treatment with SIRT1 inhibitors. These data demonstrate that resveratrol ameliorates doxorubicin-induced cardiotoxicity in aged hearts through the restoration of SIRT1 activity to attenuate USP7-related catabolic/pro-apoptotic signalling.
    The Journal of Physiology 01/2015; 593(8). DOI:10.1113/JP270101 · 5.04 Impact Factor
  • Source
    • "Walker et al. [20], in U-937 cells stimulated with lipopolysaccharides from Escherichia coli, proved that 10 mM resveratrol completely inhibited the E. coli-LPS-induced release of IL-6 and reduced TNF-α release by 48.1%. In accordance with Walker et al. [20], Qureshi et al. [37] showed that 0.1 to 10 mM resveratrol inhibited the LPS-stimulated release of TNF-α and gene expression of TNF-α, IL-1β, IL-6, and iNOS from RAW 264.7 macrophages. Another study showed that pretreatment of RAW 264.7 macrophages with resveratrol (≥25 μM) followed by LPS stimulation resulted in a reduction of the IL-6 and TNF-α release compared to the LPS treatment [30]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages consist of two main subsets: the proinflammatory M1 subset and the anti-inflammatory M2 one. 7-oxo-cholesterol, the most abundant cholesterol autoxidation product within atherosclerotic plaque, is able to skew the M1/M2 balance towards a proinflammatory profile. In the present study, we explored the ability of the polyphenolic compound resveratrol to counteract the 7-oxo-cholesterol-triggered proinflammatory signaling in macrophages. Resveratrol-pretreated human monocyte-derived M1 and M2 macrophages were challenged with 7-oxo-cholesterol and analyzed for phenotype and endocytic ability by flow cytometry, for metalloproteinase- (MMP-) 2 and MMP-9 by gelatin zymography, and for cytokine, chemokine, and growth factor secretome by a multiplex immunoassay. We also investigated the NF- κ B signaling pathway. In the M1 subset, resveratrol prevented the downregulation of CD16 and the upregulation of MMP-2 in response to 7-oxo-cholesterol, whereas in M2 macrophages it prevented the upregulation of CD14, MMP-2, and MMP-9 and the downregulation of endocytosis. Resveratrol prevented the upregulation of several proinflammatory and proangiogenic molecules in both subsets. We identified modulation of NF- κ B as a potential mechanism implicated in 7-oxo-cholesterol and resveratrol effects. Our results strengthen previous findings on the immunomodulatory ability of resveratrol and highlight its role as potential therapeutic or preventive compound, to counteract the proatherogenic oxysterol signaling within atherosclerotic plaque.
    Oxidative medicine and cellular longevity 05/2014; 2014:257543. DOI:10.1155/2014/257543 · 3.36 Impact Factor
Show more