Article

Fluorescence in situ hybridization of single copy transgenes in rice chromosomes

In Vitro Cellular & Developmental Biology - Plant (Impact Factor: 1.14). 01/2001; 37(1):1-5. DOI: 10.1007/s11627-001-0001-6

ABSTRACT Fluorescence in situ hybridization (FISH) is a powerful tool for visualizing the chromosomal location of targeted sequences and has been applied
in many areas, including karyotyping, breeding and characterization of genes introduced into the plant genome. A simple, routine
and sensitive FISH procedure was developed for localizing single copy genes in rice (Oryza sativa L.) metaphase chromosomes. We used digoxygenin-labeled endogenous or T-DNA sequences as small as 5.6 kb to probe corresponding
endogenous sequences or the T-DNA insert in denatured rice metaphase chromosomes prepared from root meristem tissue. The hybridized
probe sequence was labeled with cy3-conjugated anti-mouse IgG and visualized using fluorescence microscopy. Single copy and
multiple copy introduced T-DNA sequences, as well as endogenous sequences, were localized on the chromosomes. The FISH protocol
was effectively used to sereen the chromosomal location of introduced T-DNA and number of integration loci in rice.

0 Bookmarks
 · 
152 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence in situ hybridization (FISH) using T-DNA probes was applied to localize transgenes onto specific chromosomes and confirm the steady integration of transferred genes in three genetically modified (GM) rice lines, LS28 (event LS30-32-20-1), Cry1Ac1 (event C7-1-9-1) and LS28×Cry1Ac1 (event L/C1-1-3-1), which are a rice leaf blast-resistant single trait GM line, a leaf folder-resistant single trait GM line, and a rice leaf blast-resistant and leaf folder-resistant stacked GM hybrid line, respectively. The FISH signals were clearly detected on the arms of one homologous chromosome pair for LS28, and on the arms of another chromosome pair for Cry1Ac1 when using the transformation vector pSBM AtCK containing the rice leaf blast-resistant gene (LS28) and pMJ-RTB containing the leaf folder-resistant gene (mCry1Ac1) as a probe, respectively. As expected, we detected two pairs of FISH signals, each on the arms of different chromosome pairs in the stacked GM rice line LS28×Cry1Ac1 when using both pSBM AtCK and pMJ-RTB as probes. These results indicate that the transgenes are located at specific homologous loci and show position stability among generations in both single trait and stacked GM rice lines. The usefulness and the necessity of FISH to detect inserted genes in transformed plants will be discussed for the purpose of future studies to develop breeding programs and conduct risk assessment of GM plants.
    Genes & genomics 01/2010; 32:527-531. · 0.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic engineering of commercially important crops has become routine in many laboratories. However, the inability to predict where a transgene will integrate and to efficiently select plants with stable levels of transgenic expression remains a limitation of this technology. Fluorescence in situ hybridization (FISH) is a powerful technique that can be used to visualize transgene integration sites and provide a better understanding of transgene behavior. Studies using FISH to characterize transgene integration have focused primarily on metaphase chromosomes, because the number and position of integration sites on the chromosomes are more easily determined at this stage. However gene (and transgene) expression occurs mainly during interphase. In order to accurately predict the activity of a transgene, it is critical to understand its location and dynamics in the three-dimensional interphase nucleus. We and others have developed in situ methods to visualize transgenes (including single copy genes) and their transcripts during interphase from different tissues and plant species. These techniques reduce the time necessary for characterization of transgene integration by eliminating the need for time-consuming segregation analysis, and extend characterization to the interphase nucleus, thus increasing the likelihood of accurate prediction of transgene activity. Furthermore, this approach is useful for studying nuclear organization and the dynamics of genes and chromatin.
    Plant Methods 02/2006; 2:18. · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two barley transformation systems, Agrobacterium-mediated and particle bombardment, were compared in terms of transformation efficiency, transgene copy number, expression, inheritance and physical structure of the transgenic loci using fluorescence in situ hybridisation (FISH). The efficiency of Agrobacterium-mediated transformation was double that obtained with particle bombardment. While 100% of the Agrobacterium-derived lines integrated between one and three copies of the transgene, 60% of the transgenic lines derived by particle bombardment integrated more than eight copies of the transgene. In most of the Agrobacterium-derived lines, the integrated T-DNA was stable and inherited as a simple Mendelian trait. Transgene silencing was frequently observed in the T1 populations of the bombardment-derived lines. The FISH technique was able to reveal additional details of the transgene integration site. For the efficient production of transgenic barley plants, with stable transgene expression and reduced silencing, the Agrobacterium-mediated method appears to offer significant advantages over particle bombardment.
    Plant Cell Reports 04/2005; 23(12):780-9. · 2.51 Impact Factor