Article

The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro

Shenzhen Research Institute of City University of Hong Kong Key Laboratory of Biochip Research Shenzhen 518057 China; City University of Hong Kong Department of Biology and Chemistry Hong Kong China
Chinese Science Bulletin (Impact Factor: 1.37). 55(11):1013-1019. DOI: 10.1007/s11434-010-0046-1

ABSTRACT This study has investigated the effects of gold nanoparticles (Au NPs) on the proliferation, differentiation, and mineralization
of a murine preosteoblast cell line MC3T3-E1 in vitro. The results show that Au NPs with diameters of both 20 and 40 nm promoted the proliferation, differentiation, and mineralization
of MC3T3-E1 cells in a time- and dose-dependent manner at the concentrations of 1.5×10−5, 3.0×10−5, and 1.5×10−4 μmol/L. The reverse transcriptase polymerase chain reaction (RT-PCR) indicates that the expressions of runt-related transcription
factor 2 (Runx2), bone morphogenetic protein 2 (BMP-2), alkaline phosphatase (ALP), and osteocalcin (OCN) genes increased after the 20 and 40 nm Au NP treatments, and the expression levels were higher than those of the NaF group.
The above results suggest that Au NPs have the potential to promote the osteogenic differentiation and mineralization of MC3T3-E1
cells and the particle size plays a significant role in the process. Runx2, BMP-2, ALP, and OCN genes may interact with each other, further stimulating the osteogenic differentiation of MC3T3-E1 cells.

Keywordsgold nanoparticles-proliferation-osteogenic differentiation-mineralization

0 Bookmarks
 · 
162 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gold nanoparticles are very attractive for biomedical products. However, there is a serious lack of information concerning the biological activity of nanosized gold in human tissue cells. An influence of nanoparticles on stem cells might lead to unforeseen consequences to organ and tissue functions as long as all cells arising from the initial stem cell might be subsequently damaged. Therefore the effect of negatively charged gold nanoparticles (9 and 95 nm), which are certified as reference material for preclinical biomedical research, on the adipogenic differentiation of human mesenchymal stem cells (hMSCs) is investigated here. Bone marrow hMSCs are chosen as differentiation model since bone marrow hMSCs are well characterized and their differentiation into the adipogenic lineage shows clear and easily detectable differentiation. In this study effects of gold nanoparticles on adipogenic differentiation are analyzed regarding fat storage and mitochondrial activity after different exposure times (4–21 days). Using time lapse microscopy the differentiation progress under chronically gold nanoparticle treatment is continuously investigated. In this preliminary study, chronically treatment of adipogenic differentiating hMSCs with gold nanoparticles resulted in a reduced number and size of lipid vacuoles and reduced mitochondrial activity depending on the applied concentration and the surface charge of the particles.
    Journal of Nanoparticle Research 13(12). · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of cerium oxide nanoparticles on the proliferation, differentiation, and mineralization function of primary osteoblasts in vitro were evaluated. The results showed that the cell biological effects of cerium oxide nanoparticles varied with different diameters. The cytotoxicity of cerium oxide nanoparticles on primary osteoblasts varies with the size and incubation time. Sixty-nanometer cerium oxide nanoparticles show significant cytotoxicity on primary osteoblasts at 48 h exposure. Cerium oxide nanoparticles with diameters of 40 nm promoted the differentiation of osteoblasts and the promotion rate was enhanced with increasing concentration. Cerium oxide nanoparticles with diameters of 60 nm promoted the differentiation of osteoblasts at lower concentrations, but turned to inhibit the differentiation at higher concentrations. Cerium oxide nanoparticles promoted the adipogenic transdifferentiation of osteoblasts at all tested concentrations. Moreover, the effects of 60-nm cerium oxide nanoparticles were stronger than that of 40-nm cerium oxide nanoparticles. Cerium oxide nanoparticles promoted the formation of mineralized matrix nodules of osteoblasts at all tested concentrations in a dose-dependent manner and the promotion rate increased with decreasing size. The results showed that cerium oxide nanoparticles had no acute cytotoxic effects on osteoblasts and could promote the osteogenic differentiation and mineralization of osteoblasts. Moreover, the size, concentration, and culture time of nanoparticles have significant influence on the proliferation, differentiation, and mineralization of osteoblasts.
    Biological trace element research 04/2013; · 1.92 Impact Factor

Full-text (2 Sources)

Download
65 Downloads
Available from
May 16, 2014