Article

Chemoselective hydroxyl group transformation: an elusive target.

Departments of Chemistry, Indiana University, Bloomington, IN 47405, USA.
Molecular BioSystems (Impact Factor: 3.18). 06/2012; 8(10):2484-93. DOI: 10.1039/c2mb25122a
Source: PubMed

ABSTRACT The selective reaction of one functional group in the presence of others is not a trivial task. A noteworthy amount of research has been dedicated to the chemoselective reaction of the hydroxyl moiety. This group is prevalent in many biologically important molecules including natural products and proteins. However, targeting the hydroxyl group is difficult for many reasons including its relatively low nucleophilicity in comparison to other ubiquitous functional groups such as amines and thiols. Additionally, many of the developed chemoselective reactions cannot be used in the presence of water. Despite these complications, chemoselective transformation of the hydroxyl moiety has been utilized in the synthesis of complex natural product derivatives, the reaction of tyrosine residues in proteins, the isolation of natural products and is the mechanism of action of myriad drugs. Here, methods for selective targeting of this group, as well as applications of several devised methods, are described.

1 Follower
 · 
140 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hydroxyl moieties are highly prevalent in natural products. We previously reported a chemoselective strategy for enrichment of hydroxyl-functionalized molecules by formation of a silyl ether bond to a resin. To generate smaller pools of molecules for analysis, we developed cleavage conditions to promote stepwise release of phenolic silyl ethers followed by aliphatic silyl ethers with a "tamed" version of the superbase 1,1,3,3-tetramethylguanadine. We demonstrate this as a general strategy for selective deprotection of phenolic silyl ethers under neutral conditions at room temperature.
    The Journal of Organic Chemistry 07/2013; 78(14). DOI:10.1021/jo4010298 · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural product discovery has been boosted by genome mining approaches, but compound purification is often still challenging. We report an enzymatic strategy for "stable isotope labeling of phosphonates in extract" (SILPE) that facilitates their purification. We used the phosphonate methyltransferase DhpI involved in dehydrophos biosynthesis to methylate a variety of phosphonate natural products in crude spent medium with a mixture of labeled and unlabeled S-adenosyl methionine. Mass-guided fractionation then allowed straightforward purification. We illustrate its utility by purifying a phosphonate that led to the identification of the fosfazinomycin biosynthetic gene cluster. This unusual natural product contains a hydrazide linker between a carboxylic acid and a phosphonic acid. Bioinformatic analysis of the gene cluster provides insights into how such a structure might be assembled.
    Angewandte Chemie International Edition 01/2014; 126(5). DOI:10.1002/anie.201308363 · 11.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of catalytically active macromolecular networks in the form of soluble polymers, crosslinked polymer beads or nanoparticulate systems. The objective of the present review is to increase awareness of the existence and convenience of this methodology, assess its competitiveness compared to newer and more elaborate procedures for chemoselective O-acylation reactions, spur its further development, and finally to chronicle the informative, but poorly documented history of its development.
    Beilstein Journal of Organic Chemistry 04/2015; 11:446-468. DOI:10.3762/bjoc.11.51 · 2.80 Impact Factor