Article

Quantitative in vivo imaging of embryonic development: opportunities and challenges.

Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
Differentiation (Impact Factor: 2.86). 06/2012; 84(1):149-62. DOI: 10.1016/j.diff.2012.05.003
Source: PubMed

ABSTRACT Animal models are critically important for a mechanistic understanding of embryonic morphogenesis. For decades, visualizing these rapid and complex multidimensional events has relied on projection images and thin section reconstructions. While much insight has been gained, fixed tissue specimens offer limited information on dynamic processes that are essential for tissue assembly and organ patterning. Quantitative imaging is required to unlock the important basic science and clinically relevant secrets that remain hidden. Recent advances in live imaging technology have enabled quantitative longitudinal analysis of embryonic morphogenesis at multiple length and time scales. Four different imaging modalities are currently being used to monitor embryonic morphogenesis: optical, ultrasound, magnetic resonance imaging (MRI), and micro-computed tomography (micro-CT). Each has its advantages and limitations with respect to spatial resolution, depth of field, scanning speed, and tissue contrast. In addition, new processing tools have been developed to enhance live imaging capabilities. In this review, we analyze each type of imaging source and its use in quantitative study of embryonic morphogenesis in small animal models. We describe the physics behind their function, identify some examples in which the modality has revealed new quantitative insights, and then conclude with a discussion of new research directions with live imaging.

1 Bookmark
 · 
122 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During embryonic development tissue morphogenesis and signaling are tightly coupled. It is therefore important to simulate both tissue morphogenesis and signaling simultaneously in in silico models of developmental processes. The resolution of the processes depends on the questions of interest. As part of this chapter we will introduce different descriptions of tissue morphogenesis. In the most simple approximation tissue is a continuous domain and tissue expansion is described according to a pre-defined function of time (and possibly space). In a slightly more advanced version the expansion speed and direction of the tissue may depend on a signaling variable that evolves on the domain. Both versions will be referred to as 'prescribed growth'. Alternatively tissue can be regarded as incompressible fluid and can be described with Navier-Stokes equations. Local cell expansion, proliferation, and death are then incorporated by a source term. In other applications the cell boundaries may be important and cell-based models must be introduced. Finally, cells may move within the tissue, a process best described by agent-based models.
    10/2014; , ISBN: 1493911635
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rapid three-dimensional imaging of embryos to better understand the complex process of morphogenesis has been challenging. Recently introduced iodine staining protocols (I2 KI and alcoholic iodine stains) combined with microscopic X-ray computed tomography allows visualization of soft tissues in diverse small organisms and tissue specimens. I2 KI protocols have been developed specifically for small animals, with a limited number of quantitative studies of soft tissue contrasts. To take full advantage of the low X-ray attenuation of ethanol and retain bound iodine while dehydrating the specimen in ethanol, we developed an ethanol I2 KI protocol. We present comparative microscopic X-ray computed tomography analyses of ethanol I2 KI and I2 KI staining protocols to assess the performance of this new protocol to visualize soft tissue anatomy in late stage Japanese quail embryos using quantitative measurements of soft tissue contrasts and sample shrinkage. Both protocols had only 5% shrinkage compared with the original harvested specimen, supporting the use of whole mounts to minimize tissue shrinkage effects. Discrimination within and among the selected organs with each staining protocol and microscopic X-ray computed tomography imaging were comparable to those of a gray scale histological section. Tissue discrimination was assessed using calibrated computed tomography values and a new discrimination index to quantify the degree of computed tomography value overlaps between selected soft tissue regions. Tissue contrasts were dependent on the depth of the tissue within the embryos before the embryos were saturated with each stain solution, and optimal stain saturations for the entire embryo were achieved at 14 and 28 days staining for I2 KI and ethanol I2 KI, respectively. Ethanol I2 KI provided superior soft tissue contrasts by reducing overstaining of fluid-filled spaces and differentially modulating staining of some tissues, such as bronchial and esophageal walls and spinal cord. Delineating the selected soft tissues using optimal threshold ranges derived from the quantitative analyses of the contrast enhancement in optimally stained embryos is possible. The protocols presented here are expected to be applicable to other organisms with modifications to staining time and contribute toward rapid and more efficient segmentation of soft tissues for three-dimensional visualization.
    Journal of Anatomy 07/2013; · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interrelationship of morphogenesis and metabolism is a poorly studied phenomenon. The main paradigm is that development is controlled by gene expression. The aim of the present study was to correlate metabolism to early and late stages of flower and fruit development in order to provide the basis for the identification of metabolic adjustment and limitations. A highly detailed picture of morphogenesis is achieved using nondestructive micro computed tomography. This technique was used to quantify morphometric parameters of early and late flower development in an Arabidopsis thaliana mutant with synchronized flower initiation. The synchronized flower phenotype made it possible to sample enough early floral tissue otherwise not accessible for metabolomic analysis. The integration of metabolomic and morphometric data enabled the correlation of metabolic signatures with the process of flower morphogenesis. These signatures changed significantly during development, indicating a pronounced metabolic reprogramming in the tissue. Distinct sets of metabolites involved in these processes were identified and were linked to the findings of previous gene expression studies of flower development. High correlations with basic leucine zipper (bZIP) transcription factors and nitrogen metabolism genes involved in the control of metabolic carbon : nitrogen partitioning were revealed. Based on these observations a model for metabolic adjustment during flower development is proposed.
    New Phytologist 12/2013; · 6.74 Impact Factor

Full-text

View
70 Downloads
Available from
May 16, 2014