Article

Quantitative in vivo imaging of embryonic development: opportunities and challenges.

Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
Differentiation (Impact Factor: 2.86). 06/2012; 84(1):149-62. DOI: 10.1016/j.diff.2012.05.003
Source: PubMed

ABSTRACT Animal models are critically important for a mechanistic understanding of embryonic morphogenesis. For decades, visualizing these rapid and complex multidimensional events has relied on projection images and thin section reconstructions. While much insight has been gained, fixed tissue specimens offer limited information on dynamic processes that are essential for tissue assembly and organ patterning. Quantitative imaging is required to unlock the important basic science and clinically relevant secrets that remain hidden. Recent advances in live imaging technology have enabled quantitative longitudinal analysis of embryonic morphogenesis at multiple length and time scales. Four different imaging modalities are currently being used to monitor embryonic morphogenesis: optical, ultrasound, magnetic resonance imaging (MRI), and micro-computed tomography (micro-CT). Each has its advantages and limitations with respect to spatial resolution, depth of field, scanning speed, and tissue contrast. In addition, new processing tools have been developed to enhance live imaging capabilities. In this review, we analyze each type of imaging source and its use in quantitative study of embryonic morphogenesis in small animal models. We describe the physics behind their function, identify some examples in which the modality has revealed new quantitative insights, and then conclude with a discussion of new research directions with live imaging.

1 Bookmark
 · 
127 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Micro-computed tomography (micro-CT) is a high resolution imaging technique that has expanded and strengthened in use since it was last reviewed in this journal in 2004. The technology has expanded to include more detailed analysis of bone, as well as soft tissues, by use of various contrast agents. It is increasingly applied to questions in developmental biology and developmental toxicology. Relatively high-throughput protocols now provide a powerful and efficient means to evaluate embryos and fetuses subjected to genetic manipulations or chemical exposures. This review provides an overview of the technology, including scanning, reconstruction, visualization, segmentation, and analysis of micro-CT generated images. This is followed by a review of more recent applications of the technology in some common laboratory species that highlight the diverse issues that can be addressed. Birth Defects Research (Part C) 99:71-82, 2013. © 2013 Wiley Periodicals, Inc.
    Birth Defects Research Part C Embryo Today Reviews 06/2013; 99(2):71-82. · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mouse model is ideal for investigating the genetic and developmental etiology of congenital heart disease. However, cardiovascular phenotyping for the precise diagnosis of structural heart defects in mice remain challenging. With rapid advances in imaging techniques, there are now high throughput phenotyping tools available for the diagnosis of structural heart defects. In this review, we discuss the efficacy of four different imaging modalities for congenital heart disease diagnosis in fetal/neonatal mice, including noninvasive fetal echocardiography, micro-computed tomography (micro-CT), micro-magnetic resonance imaging (micro-MRI), and episcopic fluorescence image capture (EFIC) histopathology. The experience we have gained in the use of these imaging modalities in a large-scale mouse mutagenesis screen have validated their efficacy for congenital heart defect diagnosis in the tiny hearts of fetal and newborn mice. These cutting edge phenotyping tools will be invaluable for furthering our understanding of the developmental etiology of congenital heart disease. Birth Defects Research (Part C) 99:93-105, 2013. © 2013 Wiley Periodicals, Inc.
    Birth Defects Research Part C Embryo Today Reviews 06/2013; 99(2):93-105. · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital heart defects (CHD) are the most prevalent congenital disease, with 45% of deaths resulting from a congenital defect due to a cardiac malformation. Clinically significant CHD permit survival upon birth, but may become immediately life threatening. Advances in surgical intervention have significantly reduced perinatal mortality, but the outcome for many malformations is bleak. Furthermore, patients living while tolerating a CHD often acquire additional complications due to the long-term systemic blood flow changes caused by even subtle anatomical abnormalities. Accurate diagnosis of defects during fetal development is critical for interventional planning and improving patient outcomes. Advances in quantitative, multidimensional imaging are necessary to uncover the basic scientific and clinically relevant morphogenetic changes and associated hemodynamic consequences influencing normal and abnormal heart development. Ultrasound is the most widely used clinical imaging technology for assessing fetal cardiac development. Ultrasound-based fetal assessment modalities include motion mode (M-mode), two dimensional (2D), and 3D/4D imaging. These datasets can be combined with computational fluid dynamics analysis to yield quantitative, volumetric, and physiological data. Additional imaging modalities, however, are available to study basic mechanisms of cardiogenesis, including optical coherence tomography, microcomputed tomography, and magnetic resonance imaging. Each imaging technology has its advantages and disadvantages regarding resolution, depth of penetration, soft tissue contrast considerations, and cost. In this review, we analyze the current clinical and scientific imaging technologies, research studies utilizing them, and appropriate animal models reflecting clinically relevant cardiogenesis and cardiac malformations. We conclude with discussing the translational impact and future opportunities for cardiovascular development imaging research. Birth Defects Research (Part C) 99:106-120, 2013. © 2013 Wiley Periodicals, Inc.
    Birth Defects Research Part C Embryo Today Reviews 06/2013; 99(2):106-20. · 4.44 Impact Factor

Full-text

View
76 Downloads
Available from
May 16, 2014