Distinct and overlapping functional roles of Src family kinases in mouse platelets

Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
Journal of Thrombosis and Haemostasis (Impact Factor: 5.55). 06/2012; 10(8):1631-45. DOI: 10.1111/j.1538-7836.2012.04814.x
Source: PubMed

Src family kinases (SFKs) play a critical role in initiating and propagating signals in platelets. The aims of this study were to quantitate SFK members present in platelets and to analyze their contribution to platelet regulation using glycoprotein VI (GPVI) and intregrin αIIbβ3, and in vivo.
Mouse platelets express four SFKs, Fgr, Fyn, Lyn and Src, with Lyn expressed at a considerably higher level than the others. Using mutant mouse models, we demonstrate that platelet activation by collagen-related peptide (CRP) is delayed and then potentiated in the absence of Lyn, but only marginally reduced in the absence of Fyn or Fgr, and unaltered in the absence of Src. Compound deletions of Lyn/Src or Fyn/Lyn, but not of Fyn/Src or Fgr/Lyn, exhibit a greater delay in activation relative to Lyn-deficient platelets. Fibrinogen-adherent platelets show reduced spreading in the absence of Src, potentiation in the absence of Lyn, but no change in the absence of Fyn or Fgr. In mice double-deficient in Lyn/Src or Fgr/Lyn, the inhibitory role of Lyn on spreading on fibrinogen is lost. Lyn is the major SFK-mediating platelet aggregation on collagen at arterial shear and its absence leads to a reduction in thrombus size in a laser injury model.
These results demonstrate that SFKs share individual and overlapping roles in regulating platelet activation, with Lyn having a dual role in regulating GPVI signaling and an inhibitory role downstream of αIIbβ3, which requires prior signaling through Src.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Microscopic bioimaging of blood flow and distribution of cancer cells in lungs is essential to analyze mechanism of lung metastasis. Such cancer metastasis has been well known to induce hypercoagulable states and thrombosis. In histopathological tissue sections, however, it has been difficult to capture rapid phenomenon of thrombus formation due to technical problems associated with much less retention of soluble serum components as well as dynamic histological features reflecting their living states. In this study, to achieve bioimaging of both hypercoagulable states and thrombosis induced by early metastasis of mouse B16-BL6 melanoma, "in vivo cryotechnique" (IVCT) was used, which retained soluble components at their original sites. Glutathione-coated quantum dots (QDs) were subsequently injected after melanoma cells via right ventricles, to examine plasma flow with fluorescence emission. At 5 sec after the melanoma injection, melanoma cells were mostly stacked and intruded in alveolar capillaries with changing their shapes. Assembly of platelets initially appeared at 1 min, and they aggregated around the stacked melanoma cells at 5 min. Such aggregated platelets were immunopositive for both phospho-tyrosine 418 and 527 of Src, indicating their partial signal activation. Fibrin monomers were also immunolocalized around both melanoma cells and platelet aggregates, and massive immunoreaction deposits of fibrinogen were also detected near the same areas, but more strongly detected around the melanoma cells, indicating initial thrombus formation. In those areas, QDs were rarely detected, probably because of the lack of blood supply. Thus, IVCT revealed histopathological features of initial thrombosis under their circulatory conditions.
    Microvascular Research 12/2013; DOI:10.1016/j.mvr.2013.11.004 · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Specific oxidized phospholipids (oxPCCD36) promote platelet hyper-reactivity and thrombosis in hyperlipidemia via the scavenger receptor CD36, however the signaling pathway(s) induced in platelets by oxPCCD36 are not well defined. We have employed mass spectrometry-based tyrosine, serine, and threonine phosphoproteomics for the unbiased analysis of platelet signaling pathways induced by oxPCCD36 as well as by the strong physiological agonist thrombin. oxPCCD36 and thrombin induced differential phosphorylation of 115 proteins (162 phosphorylation sites) and 181 proteins (334 phosphorylation sites) respectively. Most of the phosphoproteome changes induced by either agonist have never been reported in platelets; thus they provide candidates in the study of platelet signaling. Bioinformatic analyses of protein phosphorylation dependent responses were used to categorize preferential motifs for (de)phosphorylation, predict pathways and kinase activity, and construct a phosphoproteome network regulating integrin activation. A putative signaling pathway involving Src-family kinases, SYK, and PLCγ2 was identified in platelets activated by oxPCCD36. Subsequent ex vivo studies in human platelets demonstrated that this pathway is downstream of the scavenger receptor CD36 and is critical for platelet activation by oxPCCD36. Our results provide multiple insights into the mechanism of platelet activation and specifically in platelet regulation by oxPCCD36.
    PLoS ONE 01/2014; 9(1):e84488. DOI:10.1371/journal.pone.0084488 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Platelets are well-known for their critical role in hemostasis, that is, the prevention of blood loss at sites of mechanical vessel injury. Inappropriate platelet activation and adhesion, however, can lead to thrombotic complications, such as myocardial infarction and stroke. To fulfill its role in hemostasis, the platelet is equipped with various G protein-coupled receptors that mediate the response to soluble agonists such as thrombin, ADP, and thromboxane A2. In addition to G protein-coupled receptors, platelets express 3 glycoproteins that belong to the family of immunoreceptor tyrosine-based activation motif receptors: Fc receptor γ chain, which is noncovalently associated with the glycoprotein VI collagen receptor, C-type lectin 2, the receptor for podoplanin, and Fc receptor γII A, a low-affinity receptor for immune complexes. Although both genetic and chemical approaches have documented a critical role for platelet G protein-coupled receptors in hemostasis, the contribution of immunoreceptor tyrosine-based activation motif receptors to this process is less defined. Studies performed during the past decade, however, have identified new roles for platelet immunoreceptor tyrosine-based activation motif signaling in vascular integrity in utero and at sites of inflammation. The purpose of this review is to summarize recent findings on how platelet immunoreceptor tyrosine-based activation motif signaling controls vascular integrity, both in the presence and absence of mechanical injury.
    Circulation Research 03/2014; 114(7):1174-84. DOI:10.1161/CIRCRESAHA.114.301611 · 11.09 Impact Factor


1 Download

Similar Publications