Genetic purity analysis of cotton (Gossypium spp.,) hybrids using SSR markers

Seed Science and Technology (Impact Factor: 0.48). 07/2010; 38(2):358-366. DOI: 10.15258/sst.2010.38.2.09


Use of morphological differences, between true hybrids and off types in grow out test (GOT) for genetic purity analysis, are not always apparent and cannot be recognised easily. Further, morphological traits are costly, tedious to score and environment sensitive. Alternatively, it is
suggested that recent breakthrough in molecular markers can be employed in genetic purity analysis. The genetic purity of three cotton hybrids (TCHB 4510, TCHB 2310 and TCHB 213) that are widely cultivated in Tamil Nadu, India were assessed by GOT and molecular markers. A total of 400 individuals
from each one of the three hybrids were raised in the field and morphological traits were recorded. Results of this GOT have shown that TCHB 2310 had lowest genetic purity (62.5%) followed by TCHB 4510 (78.2%) and TCHB 213 (95.2%). Simple sequence repeats (SSR) marker analysis of parents that
were involved in the production of all the three hybrids have shown that 45 out of 150 SSRs were polymorphic among the parents. From this set of polymorphic SSRs, BNL686, BNL1679, BNL3971, BNL3955, CIR407 and CIR413 were selected to test the genetic purity of hybrid seeds since they have produced
clear, scorable and unambiguous polymorphic bands among the parents. All the three hybrids were clearly distinguished from their selfed females and off types using these six SSRs. Hence, it is proposed that these SSR markers can be used in efficient analysis of hybrid seed purity since this
technique is simple to use, more accurate and not affected by environment when compared with GOT.

Download full-text


Available from: Ravikesavan Rajasekaran, Oct 05, 2015
1 Follower
179 Reads
  • Source
    • "They are already a proven tool for hybrid authentication or hybrid purity assessment and parentage confirmation in many crop species (Bohra et al. 2011). Indeed, molecular markers-based hybrid purity tests have been developed and are in routine use in many crop species such as rice (Yashitola et al. 2002; Sundaram et al. 2008), maize (Asif et al. 2006), cotton (Selvakumar et al. 2010) and safflower (Naresh et al. 2009). Similar to food crops, in forest trees also inter-specific hybrids are generated routinely through hybridization and the heterotic individuals are selected for clonal propagation and mass multiplication (Nikles and Griffin 1992; Stanton et al. 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The worldwide expansion of hybrid breeding and clonal forestry is to meet the demands of paper pulp and bioenergy. Although India was one of the pioneers in hybrid production of eucalypts only recently the hybrid clonal forestry is gaining momentum. Inter-specific hybrids are being produced to exploit the hybrid vigor of F1 individuals. Quality control genotyping for hybrid purity and parentage confirmation at the early stage is one of the essential criteria for clonal propagation and field trails for the assessment of growth performance. Eucalyptus being a obligatory outcrossed species with potential to self pollination, possibilities of pollen contamination are high. Hence, in the present study, Eucalyptus camaldulensis × E. tereticornis inter-specific hybrids were genotyped using 25 fluorescent labeled microsatellite markers available in public domain. Multiplex loading of PCR products was performed successfully for most of the microsatellite loci. Hybrid purity index was calculated and parentage was confirmed. Hybrid purity values ranged from 85 to 100 % showed the efficiency of controlled pollination techniques. A subset of six fully informative simple sequence repeats was identified for routine quality control genotyping for these hybrids. Detection of non-essential genotypes observed among the hybrid seedlings proved the significance of hybrid purity tests and the false hybrids were removed at the seedling stage. The hybrids with proven hybridity will be used for generation of genetic linkage, discovery of quantitative trait loci and the individuals with high productivity can enter into mass clonal multiplication.
    08/2013; 4(4):367-373. DOI:10.1007/s13205-013-0161-1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Near isogenic lines carrying large-effect QTL (qtl12.1), which has a consistent influence on grain yield under upland drought stress conditions in a wide range of environments, were evaluated under water stress in the fields. The line which gave higher yield under drought was crossed with a local elite line, PMK3, and forwarded to F2:3 generation. Significant variation was found among the F2:3 lines for agronomic traits under water stress in the fields. Low to high broad sense heritability (H) for investigated traits was also found. Water stress indicators such as leaf rolling and leaf drying were negatively correlated with plant height, biomass and grain yield under stress. Bulked segregant analysis (BSA) was performed with the markers in the vicinity of qtl12.1, and RM27933 was found to be segregated perfectly well in individual components of drought resistant and drought susceptible bulks which were bulked based on yield under water stress among F2:3 lines. Hence, this simple and breeder friendly marker, RM27933, may be useful as a potentially valuable candidate marker for the transfer of the QTL qtl12.1 in the regional breeding program. Bioinformatic analysis of the DNA sequence of the qtl12.1 region was also done to identify and analyze positional candidate genes associated with this QTL and to ascertain the putative molecular basis of qtl12.1.
    Rice Science 12/2012; 19(4):1. DOI:10.1016/S1672-6308(13)60104-3
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L.) is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS) technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS) are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i) comparative analysis of low-and high-throughput marker technologies available in cotton, (ii) genetic diversity in the available wild and improved gene pools of cotton, (iii) identification of the genomic regions within cotton genome underlying economic traits, and (iv) marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands.
    The Scientific World Journal 10/2014; 2014. DOI:10.1155/2014/607091 · 1.73 Impact Factor