Immunity to Staphylococcus aureus secreted proteins protects rabbits from serious illnesses

Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
Vaccine (Impact Factor: 3.62). 06/2012; 30(34):5099-109. DOI: 10.1016/j.vaccine.2012.05.067
Source: PubMed


Staphylococcus aureus causes significant illnesses throughout the world, including toxic shock syndrome (TSS), pneumonia, and infective endocarditis. Major contributors to S. aureus illnesses are secreted virulence factors it produces, including superantigens and cytolysins. This study investigates the use of superantigens and cytolysins as staphylococcal vaccine candidates. Importantly, 20% of humans and 50% of rabbits in our TSS model cannot generate antibody responses to native superantigens. We generated three TSST-1 mutants; G31S/S32P, H135A, and Q136A. All rabbits administered these TSST-1 toxoids generated strong antibody responses (titers>10,000) that neutralized native TSST-1 in TSS models, both in vitro and in vivo. These TSST-1 mutants lacked detectable residual toxicity. Additionally, the TSST-1 mutants exhibited intrinsic adjuvant activity, increasing antibody responses to a second staphylococcal antigen (β-toxin). This effect may be due to TSST-1 mutants binding to the immune co-stimulatory molecule CD40. The superantigens TSST-1 and SEC and the cytolysin α-toxin are known to contribute to staphylococcal pneumonia. Immunization of rabbits against these secreted toxins provided complete protection from highly lethal challenge with a USA200 S. aureus strain producing all three exotoxins; USA200 strains are common causes of staphylococcal infections. The same three exotoxins plus the cytolysins β-toxin and γ-toxin contribute to infective endocarditis and sepsis caused by USA200 strains. Immunization against these five exotoxins protected rabbits from infective endocarditis and lethal sepsis. These data suggest that immunization against toxoid proteins of S. aureus exotoxins protects from serious illnesses, and concurrently superantigen toxoid mutants provide endogenous adjuvant activity.

Download full-text


Available from: Joseph A Merriman, Dec 18, 2013
  • Source
    • "Whether MHC class II molecules play a role in induction of an inflammatory response by SAgs in adipocytes is unknown. In a previous report, we have also speculated that TSST-1 might bind to and activate CD40 [54]. Interestingly, it has been demonstrated that mature adipocytes express CD40 that can be activated, by CD40 ligand or activated CD4+ T cells, to induce secretion of inflammatory cytokines [55]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human adipocytes may have significant functions in wound healing and the development of diabetes through production of pro-inflammatory cytokines after stimulation by gram-negative bacterial endotoxin. Diabetic foot ulcers are most often associated with staphylococcal infections. Adipocyte responses in the area of the wound may play a role in persistence and pathology. We studied the effect of staphylococcal superantigens (SAgs) on immortalized human adipocytes, alone and in the presence of bacterial endotoxin or staphylococcal α-toxin. Primary non-diabetic and diabetic human preadipocytes were immortalized by the reverse transcriptase component of telomerase (TERT) and the E6/E7 genes of human papillomavirus. The immortal cells were demonstrated to have properties of non-immortalized pre-adipocytes and could be differentiated into mature and functional adipocytes. Differentiated adipocytes exposed to staphylococcal SAgs produced robust levels of cytokines IL-6 and IL-8, but there were no significant differences in levels between the non-diabetic and diabetic cells. Cytokine production was increased by co-incubation of adipocytes with SAgs and endotoxin together. In contrast, α-toxin alone was cytotoxic at high concentrations, but, at sub-cytotoxic doses, did not stimulate production of IL-6 and IL-8. Endotoxin has been proposed to contribute to diabetes through enhanced insulin resistance after chronic exposure and stimulation of adipocytes to produce cytokines. Our data indicate staphylococcal SAgs TSST-1 and SEB alone and in combination with bacterial endotoxin also stimulate adipocytes to produce cytokines and thus may contribute to the inflammatory response found in chronic diabetic ulcers and in the systemic inflammation that is associated with the development and persistence of diabetes. The immortal human pre-adipocytes reported here will be useful for studies to understand further the mechanism by which toxins are involved in wound healing and the development and clinical manifestations of obesity and diabetes.
    PLoS ONE 10/2013; 8(10):e77988. DOI:10.1371/journal.pone.0077988 · 3.23 Impact Factor
  • Source
    • "Escherichia coli and Pseudomonas aeruginosa was investigated. These bacteria are among the most common microorganisms that have been used extensively to investigate the toxicity of various chemicals (Jardim et al., 1990; Chen et al., 2010; Fadli et al., 2011; Spaulding et al., 2012; Young et al., 2012; Fu et al., 2013). In addition, the cytotoxicity of the tested DESs towards the Artemia salina leach (brine shrimp larvae or hatches) was investigated. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In continuation of investigation for environmentally benign protocol for new solvents termed deep eutectic solvents (DESs), it is herein reported results concerning the toxicity and cytotoxicity of choline chloride (ChCl) based DESs with four hydrogen bond donors including glycerine, ethylene glycol, triethylene glycol and urea. The toxicity was investigated using two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus, and two Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. The cytotoxicity effect was tested using the Artemia salina leach. It was found that there was no toxic effect for the tested DESs on all of the studied bacteria confirming their benign effects on these bacteria. Nevertheless, it was found that the cytotoxicity of DESs was much higher than their individual components (e.g. glycerine, ChCl) indicating that their toxicological behavior is different. For our best knowledge this is the first time that toxicity and cytotoxicity of DESs were studied. The toxicity and cytotoxicity of DESs varied depending on the structure of components. Careful usage of the terms non-toxicity and biodegradability must be considered. More investigation on this matter is required.
    Chemosphere 02/2013; 90(7):2193-2195. DOI:10.1016/j.chemosphere.2012.11.004 · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The emergence and spread of multi-drug-resistant strains of Staphylococcus aureus in hospitals and in the community emphasize the urgency for the development of novel therapeutic interventions. Our approach was to evaluate the potential of harnessing the human immune system to guide the development of novel therapeutics. We explored the role of preexisting antibodies against S. aureus α-hemolysin in the serum of human individuals by isolating and characterizing one antibody with a remarkably high affinity to α-hemolysin. The antibody provided protection in S. aureus pneumonia, skin, and bacteremia mouse models of infection and also showed therapeutic efficacy when dosed up to 18h post-infection in the pneumonia model. Additionally, in pneumonia and bacteremia animal models, the therapeutic efficacy of the α-hemolysin antibody appeared additive to the antibiotic linezolid. To better understand the mechanism of action of this isolated antibody, we solved the crystal structure of the α-hemolysin:antibody complex. To our knowledge, this is the first report of the crystal structure of the α-hemolysin monomer. The structure of the complex shows that the antibody binds α-hemolysin between the cap and the rim domains. In combination with biochemical data, the structure suggests that the antibody neutralizes the activity of the toxin by preventing binding to the plasma membrane of susceptible host cells. The data presented here suggest that protective antibodies directed against S. aureus molecules exist in some individuals and that such antibodies have a therapeutic potential either alone or in combination with antibiotics.
    Journal of Molecular Biology 02/2013; 425(10). DOI:10.1016/j.jmb.2013.02.008 · 4.33 Impact Factor
Show more