Article

High insulin levels are required for FAT/CD36 plasma membrane translocation and enhanced fatty acid uptake in obese Zucker rat hepatocytes.

Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain.
AJP Endocrinology and Metabolism (Impact Factor: 4.51). 06/2012; 303(4):E504-14. DOI: 10.1152/ajpendo.00653.2011
Source: PubMed

ABSTRACT In myocytes and adipocytes, insulin increases fatty acid translocase (FAT)/CD36 translocation to the plasma membrane (PM), enhancing fatty acid (FA) uptake. Evidence links increased hepatic FAT/CD36 protein amount and gene expression with hyperinsulinemia in animal models and patients with fatty liver, but whether insulin regulates FAT/CD36 expression, amount, distribution, and function in hepatocytes is currently unknown. To investigate this, FAT/CD36 protein content in isolated hepatocytes, subfractions of organelles, and density-gradient isolated membrane subfractions was analyzed in obese and lean Zucker rats by Western blotting in liver sections by immunohistochemistry and in hepatocytes by immunocytochemistry. The uptake of oleate and oleate incorporation into lipids were assessed in hepatocytes at short time points (30-600 s). We found that FAT/CD36 protein amount at the PM was higher in hepatocytes from obese rats than from lean controls. In obese rat hepatocytes, decreased cytoplasmatic content of FAT/CD36 and redistribution from low- to middle- to middle- to high-density subfractions of microsomes were found. Hallmarks of obese Zucker rat hepatocytes were increased amount of FAT/CD36 protein at the PM and enhanced FA uptake and incorporation into triglycerides, which were maintained only when exposed to hyperinsulinemic conditions (80 mU/l). In conclusion, high insulin levels are required for FAT/CD36 translocation to the PM in obese rat hepatocytes to enhance FA uptake and triglyceride synthesis. These results suggest that the hyperinsulinemia found in animal models and patients with insulin resistance and fatty liver might contribute to liver fat accumulation by inducing FAT/CD36 functional presence at the PM of hepatocytes.

1 Bookmark
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1,3-Dichloro-2-propanol (1,3-DCP) is a well-known contaminant that has been detected in a wide range of foods. Dietary intake represents the greatest source of exposure to 1,3-DCP. In the study, we first found 1,3-DCP could induce hyperlipidemia in C57BL/6J mice below 1mg/kg/day. We investigated serum lipid profile, liver total cholesterol (TC) and triglyceride (TG), histopathology of Liver and adipose tissue. The results showed 1,3-DCP dose dependently increased serum TG, TC and low-density lipoprotein cholesterol (LDL-C), decreased serum high-density lipoprotein cholesterol (HDL-C), increased relative liver weight, liver TG and TC, relative adipose tissue weight and enlarged the size of adipose cells. Because AMPK signal pathway is important in the process of lipid metabolism, we further investigated the effects of 1,3-DCP on AMPK signaling pathway in murine models. The results showed that 1,3-DCP (0.1-1mg/kg/day) decreased p-AMPK/tAMPK ratio, p-ACC/tACC ratio, PPARα expression, but increased FAT, SREBP1, HMGCR and FAS expression. These observations indicated that 1,3-DCP induced hyperlipidemia in C57BL/6J mice at least partially through regulating AMPK signaling pathway.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 12/2013; · 2.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate a possible methodology of exploiting herbal medicine and design polytherapy for the treatment of non-alcoholic fatty liver disease (NAFLD), we have made use of Cichorium glandulosum Boiss et Huet (CG), a traditional Chinese herbal medicine that has been proven to be effective in treating hepatic diseases. Here, we report that the extract of CG effectively reduced lipid accumulation under conditions of lipid overloading in vivo and in vitro (in a rat high-fat diet model and a hepG2 cell model of free fatty acid treatment). CG extract also protected hepatocytes from injury and inflammation to aid its lipid-lowering properties (in a rat high-fat diet model and a L02 cell model of acetaminophen treatment). Serum chemistry analysis accompanied by in vitro drug screening confirmed that CG-4, CG-10 and CG-14 are the lipo-effective components of CG. Western blotting analysis revealed that these components can regulate key lipid targets at the molecular level, including CD36, FATP5 and PPAR-α, thus the lipid oxidation and lipid absorption pathways. Finally, we adopted the experimental design and statistical method to calculate the best combination proportion (CG-4: CG-10: CG-14 = 2.065: 1.782: 2.153) to optimize its therapeutic effect.
    Scientific Reports 05/2014; 4:4715. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD36 has been associated with obesity and diabetes in human liver diseases, however, its role in age-associated nonalcoholic fatty liver disease (NAFLD) is unknown. Therefore, liver biopsies were collected from individuals with histologically normal livers (n=30), and from patients diagnosed with simple steatosis (NAS; n=26). Patients were divided into two groups according to age and liver biopsy samples were immunostained for CD36. NAFLD parameters were examined in young (12-week) and middle-aged (52-week) C57BL/6J mice, some fed with chow-diet and some fed with low-fat (LFD; 10% kcal fat) or high-fat diet (HFD; 60% kcal fat) for 12-weeks. CD36 expression was positively associated with age in individuals with normal livers but not in NAS patients. However, CD36 was predominantly located at the plasma membrane of hepatocytes in aged NAS patients as compared to young. In chow-fed mice, aging, despite an increase in hepatic CD36 expression, was not associated with the development of NAFLD. However, middle-aged mice did exhibit the development of HFD-induced NAFLD, mediated by an increase of CD36 on the membrane. Enhanced CD36-mediated hepatic fat uptake may contribute to an accelerated progression of NAFLD in mice and humans. Therapies to prevent the increase in CD36 expression and/or CD36 from anchoring at the membrane may prevent the development of NAFLD.
    Aging 04/2014; · 4.70 Impact Factor

Full-text

Download
3 Downloads
Available from
Sep 29, 2014