Article

Detection and genetic diversity of human metapneumovirus in hospitalized children with acute respiratory infections in Southwest China.

Division of Immunology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China.
Journal of clinical microbiology (Impact Factor: 4.16). 06/2012; 50(8):2714-9. DOI: 10.1128/JCM.00809-12
Source: PubMed

ABSTRACT Human metapneumovirus (hMPV) is the main pathogen causing respiratory tract infection in susceptible populations, particularly in children and the elderly. Specimens were collected from hospitalized children with acute lower respiratory tract infections (ALRTI), and the hMPV was detected by using real-time reverse transcription-PCR (RT-PCR). The full-length G gene of hMPV was amplified by RT-PCR. A total of 1,410 nasopharyngeal aspirates (NPAs) were collected from April 2008 to March 2011, and 114 (10.2%) were positive for hMPV. Most hMPV-positive children were <5 years of age. The hMPV infection rate peaked in the spring-summer season of 2008 to 2009 and 2009 to 2010, while hMPV circulated predominantly during the winter-spring season of 2010 to 2011. The full-length G gene of 23 hMPV strains was amplified, and group A and B viruses accounted for 95.7% (22/23) and 4.3% (1/23), respectively. Genotype A2b of hMPV appeared to be predominant during the study period. Three genotypes (A2b, A1, and B1) were prevalent in the epidemic season of 2008 to 2009, and only genotype A2b was identified in the other two seasons (2009 to 2010 and 2010 to 2011). The G gene of hMPV was predicted to encode proteins with four different lengths, in which one with 210 amino acids was first identified in China. These findings suggest that hMPV was an important pathogen of ALRTI in pediatric patients, especially those <5 years of age. Genotype A2b of hMPV likely predominates in Southwest China, where other genotypes also circulate.

0 Bookmarks
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genotypic analysis of human metapneumo-(HMPV) and boca-(HBoV) viruses circulating in Greece and their comparison to reference and other clinical strains. Genetic analysis of representative strains over three consecutive winter seasons of the years 2005-2008. Representative positive specimens for HMPV and HBoV from paediatric patients of healthcare units and hospitals in Southern Greece with influenza-like illness or other respiratory tract infections. Seven to ten positive specimens for either HMPV or HBoV from each winter period. In total, 24 specimens positive for HMPV and 26 for HBoV, respectively. Sequence diversity of HMPV and HBoV strains by sequencing the complete G and VP1/VP2 genes, respectively. In total, 24 HMPV strains were found to have a 92-100% nucleotide and a 85.9-100% amino acid identity. Phylogenetic analysis based on the number of amino acid differences, revealed circulation of 4 different subclusters belonging to genetic lineage B2. Similarly, analysis of 26 HBoV strains indicated that 22 clustered within genotype St2, 2 into genotype St1 and the remaining 2 formed a third cluster derived from potential recombination between different St1 genotype strains. St2 HBoV genotype was observed throughout the whole observation period whereas St1 only during the second and the third winter period. Higher levels of heterogeneity were observed between HMPV compared to HBoV strains. Phylogenetic analysis revealed circulation of one single lineage (B2) for HMPV viruses and predominance of St2 genotype for HBoV viruses. A possible recombination between St1 genotype strains of HBoV was observed.
    Influenza and Other Respiratory Viruses 01/2014; 8(1):107-15. · 1.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human metapneumovirus (HMPV) is a cause of respiratory tract illness at all ages. In this study the epidemiological and molecular diversity among patients of different ages was investigated. Between 2000-2001 and 2009-2010, HMPV was detected in 3% (138/4,549) of samples from outpatients with influenza-like illness with a new, sensitive real-time RT-PCR assay. Several hundred (797) clinical specimens from hospitalized children below the age of 4 years with acute respiratory illness were investigated and HMPV was detected in 11.9% of them. Investigation of outpatients revealed that HMPV infections occurred in individuals of all ages but were most prevalent in children (0-4 years) and the elderly (>60 years). The most present clinical features of HMPV infections were cough, bronchitis, fever/shivers and pneumonia. About two thirds of HMPV-positive samples were detected in February and March throughout the study period. Molecular characterization of HMPV revealed a complex cyclic pattern of group dominance where HMPV subgroup A and B viruses predominated in general for three consecutive seasons. German HMPV represented all genetic lineages including A1, A2, B1, B2, sub-clusters A2a and A2b. For Germany, not only time-dependent circulation of lineages and sub-clusters was observed but also co-circulation of two or three predominant lineages. Two newly emerging amino acid substitutions (positions 223 and 280) of lineage B2 were detected in seven German HMPV sequences. Our study gives new insights into the molecular epidemiology of HMPV in in- and outpatients over a time period of 10 years for the first time. It is one of only few long-term surveillance studies in Europe, and allows comparative molecular analyses of HMPV circulating worldwide.
    PLoS ONE 01/2014; 9(2):e88342. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human metapneumovirus (HMPV) is an important respiratory virus implicated in respiratory infections. The purpose of this study was to develop a one-step real-time RT-PCR assay that can detect all four lineages of HMPV and to identify the HMPV lineages circulating in Pune, India. Conserved regions of the nucleoprotein gene were used to design real-time primers and a probe. A total of 224 clinical samples that were positive for different respiratory viruses (including 51 samples that were positive for HMPV) were tested using the real time RT-PCR assay, and the specificity of the assay was observed to be 100 %. Using in vitro-synthesized RNA, the sensitivity of the assay was ascertained to be 100 copies of the target gene per reaction. Phylogenetic analysis of the nucleoprotein (N) and attachment glycoprotein (G) genes confirmed that this assay detected all lineages of HMPV. A2, B1 and B2 strains were observed during the study period. Our assay is highly sensitive and specific for all known lineages of HMPV, making it a valuable tool for rapid detection of the virus. A2 and B2 were the predominant subtypes circulating in Pune, Western India.
    Archives of Virology 08/2013; · 2.03 Impact Factor

Full-text

View
0 Downloads
Available from