Article

Regulatory dendritic cells program B cells to differentiate into CD19hiFcγIIbhi regulatory B cells through IFN-β and CD40L.

National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai, China.
Blood (Impact Factor: 9.78). 06/2012; 120(3):581-91. DOI: 10.1182/blood-2011-08-377242
Source: PubMed

ABSTRACT Regulatory dendritic cells (DCs) play important roles in the induction of peripheral tolerance and control of adaptive immune response. Our previous studies demonstrate that splenic stroma can drive mature DCs to proliferate and further differentiate into a unique subset of CD11b(hi)Ia(low) regulatory DCs, which could inhibit T-cell response, program generation of immunosuppressive memory CD4 T cells. However, the effect of regulatory DCs on B-cell function remains unclear. Here, we report that regulatory DCs can induce splenic B cells to differentiate into a distinct subtype of IL-10-producing regulatory B cells with unique phenotype CD19(hi)FcγIIb(hi). CD19(hi)FcγIIb(hi) B cells inhibit CD4 T-cell response via IL-10. CD19(hi)FcγIIb(hi) B cells have enhanced phagocytic capacity compared with conventional CD19(+) B cells, and FcγRIIb mediates the uptake of immune complex by CD19(hi)FcγIIb(hi) B cells. We found that regulatory DC-derived IFN-β and CD40 ligand are responsible for the differentiation of CD19(hi)FcγIIb(hi) B cells. Furthermore, an in vivo counterpart of CD19(hi)FcγIIb(hi) B cells in the spleen and lymph nodes with similar phenotype and regulatory function has been identified. Our results demonstrate a new manner for regulatory DCs to down-regulate immune response by, at least partially, programming B cells into regulatory B cells.

0 Bookmarks
 · 
128 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transplantation is the preferred treatment for most end-stage solid organ diseases. Despite potent immunosuppressive agents, chronic rejection remains a real problem in transplantation. For many years, the predominant immunological focus of research into transplant rejection has been T cells. The pillar of immunotherapy in clinical practice is T cell-directed, which efficiently prevents acute T cell-mediated allograft rejection. However, the root of late allograft failure is chronic rejection and the humoral arm of the immune response now emerges as an important factor in transplantation. Thus, the potential effects of Abs and B cell infiltrate on transplants have cast B cells as major actors in late graft rejection. Consequently, a number of recent drugs target either B cells or plasma cells. However, immunotherapies, such as the anti-CD20 B cell-depleting antibody, can generate deleterious effects on the transplant, likely due to the deletion of beneficial population. The positive contribution of regulatory B (Breg) cells or B10 cells has been reported in the case of transplantation, mainly in mice models and highlights the primordial role that some populations of B cells can play in graft tolerance. Yet, this regulatory aspect remains poorly characterized in clinical transplantation. Thus, total B cell depletion treatments should be avoided and novel approaches should be considered that manipulate the different B cell subsets. This article provides an overview of the current knowledge on the link between Breg cells and grafts, and reports a number of data advising Breg cells as a new target for future therapeutic approaches.
    Frontiers in Immunology 01/2014; 5:11.
  • Blood 01/2014; 123(5):606-607. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: B lymphocytes are generally recognized for their potential to mediate humoral immunity by producing different antibody isotypes and being involved in opsonization and complement fixation. Nevertheless, the non-classical, antibody-independent immune potential of B cell subsets has attracted much attention especially in the past decade. These B cells can release a broad variety of cytokines (such as IL-2, IL-4, IL-6, IL-10, IL-17, IFN-α, IFN-γ, TNF-α, TGF-β, LT), and can be classified into distinct subsets depending on the particular cytokine profile, thus emerging the concept of cytokine-producing B cell subsets. Although there is still controversy surrounding the key cell surface markers, intracellular factors and cellular origins of cytokine-producing B cell subsets, accumulating evidence indicates that these B cells are endowed with great potential to regulate both innate and adaptive arms of immune system though releasing cytokines. On the one hand, they promote immune responses through mounting Th1/Th2/Th17 and neutrophil response, inducing DC maturation and formation of lymphoid structures, increasing NK cell and macrophage activation, enhancing development of themselves and sustaining antibody production. On the other hand, they can negatively regulate immune responses by suppressing Th cell responses, inhibiting Tr1 cell and Foxp3(+) Treg differentiation, impairing APC function and pro-inflammatory cytokine release by monocytes, and inducing CD8(+) T cell anergy and CD4(+) T cell apoptosis. Therefore, cytokine-producing B cell subsets have multifunctional functions in health and diseases, playing pathologic as well as protective roles in autoimmunity, infection, allergy, and even malignancy. In this review, we revisit the history of discovering cytokine-producing B cells, describe the identification of cytokine-producing B cell subsets, introduce the origins of cytokine-producing B cell subsets as well as molecular and cellular mechanisms for their differentiation, and summarize the recent progress made toward understanding the unexpectedly complex and potentially opposing roles of cytokine-producing B cells in immunological disorders.
    Journal of Autoimmunity 04/2014; · 8.15 Impact Factor