The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis.

Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA.
Science Signaling (Impact Factor: 7.65). 06/2012; 5(228):ra42. DOI: 10.1126/scisignal.2002790
Source: PubMed

ABSTRACT Lysosomes are the major cellular site for clearance of defective organelles and digestion of internalized material. Demand on lysosomal capacity can vary greatly, and lysosomal function must be adjusted to maintain cellular homeostasis. Here, we identified an interaction between the lysosome-localized mechanistic target of rapamycin complex 1 (mTORC1) and the transcription factor TFEB (transcription factor EB), which promotes lysosome biogenesis. When lysosomal activity was adequate, mTOR-dependent phosphorylation of TFEB on Ser(211) triggered the binding of 14-3-3 proteins to TFEB, resulting in retention of the transcription factor in the cytoplasm. Inhibition of lysosomal function reduced the mTOR-dependent phosphorylation of TFEB, resulting in diminished interactions between TFEB and 14-3-3 proteins and the translocation of TFEB into the nucleus, where it could stimulate genes involved in lysosomal biogenesis. These results identify TFEB as a target of mTOR and suggest a mechanism for matching the transcriptional regulation of genes encoding proteins of autophagosomes and lysosomes to cellular need. The closely related transcription factors MITF (microphthalmia transcription factor) and TFE3 (transcription factor E3) also localized to lysosomes and accumulated in the nucleus when lysosome function was inhibited, thus broadening the range of physiological contexts under which this regulatory mechanism may prove important.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The involvement of autophagy in the cornea during the systemic inflammatory response elicited by intravenous administration of lipopolysaccharide (LPS) was investigated. Eight-week-old male Sprague-Dawley rats were injected i.v. with 15 mg/kg body weight LPS. RC4 rabbit corneal keratocytes were also used and treated with 100 ng/mL of tumor necrosis factor α (TNFα) and/or cycloheximide (CHX). The nuclear translocation of transcription factor EB (TFEB), the master transcriptional regulator for autophagy, was observed after LPS administration in the corneal epithelium. Induction of autophagy-related proteins was observed in the cornea after LPS administration, as well as in RC4 cells after treatment with TNFα. Administration of trehalose, an inducer of TFEB, mitigated RC4 cell death caused by TNFα/CHX. These results demonstrate the importance of TFEB activation in cellular defense against the systemic inflammatory response in the cornea.
    Journal of Toxicologic Pathology 07/2014; 27(2):153-8. · 0.94 Impact Factor
  • Source
    Frontiers in Cell and Developmental Biology 09/2014; 2:52.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rotenone is an environmental neurotoxin that induces accumulation of α-synuclein and degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc), but the molecular mechanisms are not fully understood. We investigated whether rotenone induced impairment of autophagic flux and lysosomal functions. Autophagy flux, accumulation of α-synuclein, lysosomal membrane integrity and neurodegeneration were assessed in the rotenone-treated rat model and PC12 cells, and the effects of the autophagy inducer trehalose on rotenone's cytotoxicity were also studied. Rotenone administration significantly reduced motor activity and caused a loss of tyrosine hydroxylase in SNpc of Lewis rats. The degeneration of nigral dopaminergic neurons was accompanied by the deposition of α-synuclein aggregates, autophagosomes and redistribution of cathepsin D from lysosomes to the cytosol. In cultured PC12 cells, rotenone also induced increases in protein levels of α-synuclein, microtubule-associated protein 1 light chain 3-II, Beclin 1, and p62. Rotenone increased lysosomal membrane permeability as evidenced by leakage of N-acetyl-beta-d-glucosaminidase and cathepsin D, the effects were blocked by reactive oxygen species scavenger tiron. Autophagy inducer trehalose enhanced the nuclear translocation of transcription factor EB, accelerated the clearance of autophagosomes and α-synuclein and attenuated rotenone-induced cell death of PC12 cells. Meanwhile, administration of trehalose to rats in drinking water (2%) decreased rotenone-induced dopaminergic neurons loss in SNpc. These studies indicate that the lysosomal dysfunction contributes to rotenone's neurotoxicity and restoration of lysosomal function could be a new therapeutic strategy for Parkinson's disease. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
    Neuroscience 11/2014; 284C:900-911. · 3.33 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014