Article

Controlling wildlife fungal disease spread: in vitro efficacy of disinfectants against Batrachochytrium dendrobatidis and Mucor amphibiorum.

Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Queensland, Australia.
Diseases of Aquatic Organisms (Impact Factor: 1.73). 06/2012; 99(2):119-25. DOI: 10.3354/dao02461
Source: PubMed

ABSTRACT Chytridiomycosis in amphibians, and mucormycosis in the platypus Ornithorhynchus anatinus and amphibians, are serious fungal diseases affecting these aquatic taxa. In Tasmania, Australia, the fungi that cause these diseases overlap in range along with Phytophthora cinnamomi (Pc), an invasive fungal plant pathogen. To identify disinfectants that may be useful to reduce anthropogenic spread of these fungi to uninfected wilderness areas, for example by bush walkers and forestry or fire-fighting operations, we tested 3 disinfectants and a fire-fighting foam against Mucor amphibiorum (Ma) and tested 1 disinfectant and the foam against Batrachochytrium dendrobatidis (Bd). Combining the present study with previous work we found Bd was more susceptible to all 4 chemicals than Ma. Phytoclean, a disinfectant used at 2 to 10% for 30 s to control Pc, killed cultures of Bd at 0.075% and Ma at 5%, when also applied for 30 s. The disinfectant F10sc was not effective against Ma at standard exposures, but previous work shows Bd is killed at 0.03% with a 1 min exposure. Path-X is effective against Bd at 0.001% with a 30 s exposure and killed Ma at 1% with a 5 min exposure. Forexpan S, a foam added to water at 0.1 to 1% to control forest fires, killed Bd but not Ma when used at 1% for 2 min. Therefore, Phytoclean and Path-X have broader efficacy, although Path-X has not been trialled against Pc. Interestingly a positive mating strain of Ma (from a platypus) was more resistant to disinfectants than a negative strain (from a frog). Current protocols against Pc that involve high concentrations (10%) of Phytoclean are likely to reduce spread of pathogenic wildlife fungi, which is important for protecting biodiversity.

0 Bookmarks
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry.
    Frontiers in microbiology. 01/2014; 5:278.

Full-text

Download
6 Downloads
Available from
Jun 9, 2014