The role of nisin in fuel ethanol production with Saccharomyces cerevisiae.

The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.
Letters in Applied Microbiology (Impact Factor: 1.63). 06/2012; 55(2):128-34. DOI: 10.1111/j.1472-765X.2012.03275.x
Source: PubMed

ABSTRACT To investigate the effects of nisin on lactobacilli contamination of yeast during ethanol fermentation and to determine the appropriate concentration required to control the growth of selected lactobacilli in a YP/glucose media fermentation model.
The lowest concentration of nisin tested (5 IU ml(-1) ) effectively controlled the contamination of YP/glucose media with 10(6) CFU ml(-1) lactobacilli. Lactic acid yield decreased from 5.0 to 2. 0 g l(-1) and potential ethanol yield losses owing to the growth and metabolism of Lactobacillus plantarum and Lactobacillus brevis were reduced by 11 and 7.8%, respectively. Approximately, equal concentrations of lactic acid were produced by Lact. plantarum and Lact. brevis in the presence of 5 and 2 IU ml(-1) nisin, respectively, thus demonstrating the relatively higher nisin sensitivity of Lact. brevis for the strains in this study. No differences were observed in the final ethanol concentrations produced by yeast in the absence of bacteria at any of the nisin concentrations tested.
Metabolism of contaminating bacteria was reduced in the presence of 5 IU ml(-1) nisin, resulting in reduced lactic acid production and increased ethanol production by the yeast.
Bacteriocins represent an alternative to the use of antibiotics for the control of bacterial contamination in fuel ethanol plants and may be important in preventing the emergence of antibiotic-resistant contaminating strains.