Diagnóstico citogenético de pacientes com retardo mental idiopático Cytogenetic diagnosis of patients with idiopathic mental retardation

J Bras Patol Med Lab 01/2011; 48(1):33-39.


O retardo mental é uma condição presente em 2% a 3% da população e mais da metade dos casos ainda são considerados idiopáticos. Sua etiologia é heterogênea e as anomalias cromossômicas têm importante contribuição. A aplicação de técnicas de citogenética clássica e de citogenética molecular tem permitido o diagnóstico preciso em muitos casos, proporcionando melhor acompanhamento clínico e aconselhamento genético. Este trabalho tem como objetivo informar sobre os principais exames atualmente disponíveis para a investigação de rearranjos cromossômicos em pacientes com retardo mental idiopático, incluindo cariótipo com bandeamento G, hibridação in situ fluorescente (FISH), cariotipagem espectral (SKy), amplificação de múltiplas sondas dependente de ligação (MLPA) e hibridação genômica comparativa em array (array-CGH). resumo unitermos Retardo mental Cariótipo FISH SKY MLPA Array-CGH abstract Mental retardation is a condition that affects 2%-3% of the population and more than half of the cases are still deemed idiopathic. Its etiology is heterogeneous and chromosome abnormalities play a significant role. The application of classical cytogenetic and molecular cytogenetic techniques has enabled accurate diagnosis in several cases, which allows better clinical monitoring and genetic counseling. This paper aims at informing about the major tests currently available to investigate chromosome abnormalities in patients with idiopathic mental retardation, including GTG-banded karyotyping, fluorescence in situ hybridization (FISH), spectral karyotyping (SKY), multiplex ligation-dependent probe amplification (MLPA) and array-comparative genomic hybridization (array-CGH).

Download full-text


Available from: Marta Svartman, Oct 06, 2015
17 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of microarray-based comparative genomic hybridization (array CGH) methods represents a critical new advance in molecular cytogenetics. This new technology has driven a technical convergence between molecular diagnostics and clinical cytogenetics, questioned our naïve understanding of the complexity of the human genome, revolutionized the practice of medical genetics, challenged conventional wisdom related to the genetic bases of multifactorial and sporadic conditions, and is poised to impact all areas of medicine. The use of contemporary molecular cytogenetic techniques in research and diagnostics has resulted in the identification of many new syndromes, expanded our knowledge about the phenotypic spectrum of recognizable syndromes, elucidated the genomic bases of well-established clinical conditions, and refined our view about the molecular mechanisms of some chromosomal aberrations. Newer methodologies are being developed, which will likely lead to a new understanding of the genome and its relationship to health and disease.
    Annual Review of Genomics and Human Genetics 02/2008; 9(1):71-86. DOI:10.1146/annurev.genom.9.081307.164207 · 8.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed a microarray for clinical diagnosis of chromosomal disorders using large insert genomic DNA clones as targets for comparative genomic hybridization (CGH). The array contains 362 FISH-verified clones that span genomic regions implicated in over 40 known human genomic disorders and representative subtelomeric clones for each of the 41 clinically relevant human chromosome telomeres. Three or four clones from almost all deletion or duplication genomic regions and three or more clones for each subtelomeric region were included. We tested chromosome microarray analysis (CMA) in a masked fashion by examining genomic DNA from 25 patients who were previously ascertained in a genetic clinic and studied by conventional cytogenetics. A novel software package implemented in the R statistical programming language was developed for normalization, visualization, and inference. The CMA results were entirely consistent with previous cytogenetic and FISH findings. For clone by clone analysis, the sensitivity was estimated to be 96.7% and the specificity was 99.1%. Major advantages of this selected human genome array include the following: interrogation of clinically relevant genomic regions, the ability to test for a wide range of duplication and deletion syndromes in a single analysis, the ability to detect duplications that would likely be undetected by metaphase FISH, and ease of confirmation of suspected genomic changes by conventional FISH testing currently available in the cytogenetics laboratory. The array is an attractive alternative to telomere FISH and locus-specific FISH, but it does not include uniform coverage across the arms of each chromosome and is not intended to substitute for a standard karyotype. Limitations of CMA include the inability to detect both balanced chromosome changes and low levels of mosaicism.
    Genetics in Medicine 07/2005; 7(6):422-32. DOI:10.1097/01.GIM.0000170992.63691.32 · 7.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mental retardation (MR) occurs in 2%-3% of the general population. Conventional karyotyping has a resolution of 5-10 million bases and detects chromosomal alterations in approximately 5% of individuals with unexplained MR. The frequency of smaller submicroscopic chromosomal alterations in these patients is unknown. Novel molecular karyotyping methods, such as array-based comparative genomic hybridization (array CGH), can detect submicroscopic chromosome alterations at a resolution of 100 kb. In this study, 100 patients with unexplained MR were analyzed using array CGH for DNA copy-number changes by use of a novel tiling-resolution genomewide microarray containing 32,447 bacterial artificial clones. Alterations were validated by fluorescence in situ hybridization and/or multiplex ligation-dependent probe amplification, and parents were tested to determine de novo occurrence. Reproducible DNA copy-number changes were present in 97% of patients. The majority of these alterations were inherited from phenotypically normal parents, which reflects normal large-scale copy-number variation. In 10% of the patients, de novo alterations considered to be clinically relevant were found: seven deletions and three duplications. These alterations varied in size from 540 kb to 12 Mb and were scattered throughout the genome. Our results indicate that the diagnostic yield of this approach in the general population of patients with MR is at least twice as high as that of standard GTG-banded karyotyping.
    The American Journal of Human Genetics 11/2005; 77(4):606-16. DOI:10.1086/491719 · 10.93 Impact Factor
Show more