• Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To characterize the genetic variation of alternative splicing, we develop GLiMMPS, a robust statistical method for detecting splicing quantitative trait loci (sQTLs) from RNA-seq data. GLiMMPS takes into account the individual variation in sequencing coverage and the noise prevalent in RNA-seq data. Analyses of simulated and real RNA-seq data sets demonstrate that GLiMMPS outperforms competing statistical models. Quantitative RT-PCR tests of 26 randomly selected GLiMMPS sQTLs yielded a validation rate of 100%. As population-scale RNA-seq studies become increasingly affordable and popular, GLiMMPS provides a useful tool for elucidating the genetic variation of alternative splicing in humans and model organisms.
    Genome biology 07/2013; 14(7):R74. · 10.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing is a major contributor to cellular diversity. Therefore the identification and quantification of differentially spliced transcripts in genome-wide transcript analysis is an important consideration. Here, I review the software available for analysis of RNA-Seq data for differential splicing and discuss intrinsic challenges for differential splicing analyses. Three approaches to differential splicing analysis are described, along with their associated software implementations, their strengths, limitations, and caveats. Suggestions for future work include more extensive experimental validation to assess accuracy of the software predictions and consensus formats for outputs that would facilitate visualizations, data exchange, and downstream analyses.
    Human genomics 01/2014; 8(1):3.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vast majority of multi-exon genes in higher eukaryotes are alternatively spliced and changes in alternative splicing (AS) can impact gene function or cause disease. High-throughput RNA sequencing (RNA-seq) has become a powerful technology for transcriptome-wide analysis of AS, but RT-PCR still remains the gold-standard approach for quantifying and validating exon splicing levels. We have developed PrimerSeq, a user-friendly software for systematic design and visualization of RT-PCR primers using RNA-seq data. PrimerSeq incorporates user-provided transcriptome profiles (i.e., RNA-seq data) in the design process, and is particularly useful for large-scale quantitative analysis of AS events discovered from RNA-seq experiments. PrimerSeq features a graphical user interface (GUI) that displays the RNA-seq data juxtaposed with the expected RT-PCR results. To enable primer design and visualization on user-provided RNA-seq data and transcript annotations, we have developed PrimerSeq as a stand-alone software that runs on local computers. PrimerSeq is freely available for Windows and Mac OS X along with source code at http://primerseq.sourceforge.net/. With the growing popularity of RNA-seq for transcriptome studies, we expect PrimerSeq to help bridge the gap between high-throughput RNA-seq discovery of AS events and molecular analysis of candidate events by RT-PCR.
    Genomics Proteomics & Bioinformatics 01/2014;

Full-text

View
85 Downloads
Available from
May 27, 2014