Generic Subsequence Matching Framework: Modularity, Flexibility, Efficiency

Source: arXiv


Subsequence matching has appeared to be an ideal approach for solving many
problems related to the fields of data mining and similarity retrieval. It has
been shown that almost any data class (audio, image, biometrics, signals) is or
can be represented by some kind of time series or string of symbols, which can
be seen as an input for various subsequence matching approaches. The variety of
data types, specific tasks and their partial or full solutions is so wide that
the choice, implementation and parametrization of a suitable solution for a
given task might be complicated and time-consuming; a possibly fruitful
combination of fragments from different research areas may not be obvious nor
easy to realize. The leading authors of this field also mention the
implementation bias that makes difficult a proper comparison of competing
approaches. Therefore we present a new generic Subsequence Matching Framework
(SMF) that tries to overcome the aforementioned problems by a uniform frame
that simplifies and speeds up the design, development and evaluation of
subsequence matching related systems. We identify several relatively separate
subtasks solved differently over the literature and SMF enables to combine them
in straightforward manner achieving new quality and efficiency. This framework
can be used in many application domains and its components can be reused
effectively. Its strictly modular architecture and openness enables also
involvement of efficient solutions from different fields, for instance
efficient metric-based indexes. This is an extended version of a paper
published on DEXA 2012.


Available from: David Novak