Evaluation of the endothelial function in hypertensive patients with 13N-ammonia PET

Unidad PET/CT Ciclotrón, Facultad de Medicina, Universidad Nacional Autónoma de México, Edificio de Investigación, Planta Baja, Ciudad Universitaria, C.P. 04510, Mexico City, D.F., Mexico, .
Journal of Nuclear Cardiology (Impact Factor: 2.65). 06/2012; 19(5):979-86. DOI: 10.1007/s12350-012-9584-z
Source: PubMed

ABSTRACT Essential hypertension is one of the main risk factors for the development of coronary artery disease (CAD). Hypertension causes endothelial dysfunction which is considered an early sign for the development of CAD. Positron emission tomography is a non-invasive imaging technique that measures myocardial blood flow (MBF), allowing us to identify patients with endothelial dysfunction.
19 patients without comorbidities recently diagnosed hypertensive, as well as 21 healthy volunteers were studied. A three-phase (rest, cold pressor test, and adenosine-induced hyperemia) (13)N-ammonia PET was performed, and MBF was measured. Endothelial-Dependent Vasodilation Index, ΔMBF, and coronary flow reserve (CFR) were calculated for each patient. Hypertensive patients had a significantly higher systolic and diastolic blood pressures compared with the control group (134.6 ± 11.7/86.4 ± 10.6 mm Hg and 106.0 ± 11.8/71.4 ± 6.6 mm Hg, respectively, P < .001). The ENDEVI (1.28 ± 0.26 vs 1.79 ± 0.30, P < .001), the ΔMBF (0.81 ± 0.50 vs 0.25 ± 0.21, P < .001) and the CFR (2.18 ± 0.88 vs 3.17 ± 0.68, P = .001) were significantly lower in the hypertensive patients compared to the control group, 84% of the former group had endothelial dysfunction i.e., ENDEVI < 1.5 and 58% had vasomotor abnormalities, i.e., CFR < 2.5.
In this study, we showed that recently diagnosed hypertensive patients have coronary endothelial dysfunction and vasomotor disturbances which are early signs for the development of CAD.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac PET has evolved over the past 30 years to gain wider acceptance as a valuable modality for a variety of cardiac conditions. Wider availability of scanners as well as changes in reimbursement policies in more recent years has further increased its use. Moreover, with the emergence of novel radionuclides as well as further advances in scanner technology, the use of cardiac PET can be expected to increase further in both clinical practice and the research arena. PET has demonstrated superior diagnostic accuracy for the diagnosis of coronary artery disease in comparison with single-photon emission tomography while it provides robust prognostic value. The addition of absolute flow quantification increases sensitivity for 3-vessel disease as well as providing incremental functional and prognostic information. Metabolic imaging using (18)F-fluorodeoxyglucose can be used to guide revascularization in the setting of heart failure and also to detect active inflammation in conditions such as cardiac sarcoidosis and within atherosclerotic plaque, improving our understanding of the processes that underlie these conditions. However, although the pace of new developments is rapid, there remains a gap in evidence for many of these advances and further studies are required.
    Seminars in nuclear medicine 11/2013; 43(6):434-448. DOI:10.1053/j.semnuclmed.2013.06.001 · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial dysfunction is associated with vascular risk factors such as dyslipidemia, hypertension, and diabetes, leading to coronary atherosclerosis. Sympathetic stress using cold-pressor testing (CPT) has been used to measure coronary endothelial function in humans with positron emission tomography (PET) myocardial blood flow (MBF) imaging, but is not practical in small animal models. This study characterized coronary vasomotor function in mice with [(11)C]acetate micro-PET measurements of nitric-oxide-mediated endothelial flow reserve (EFRNOM) (adrenergic-stress/rest MBF) and myocardial oxygen consumption (MVO2) using salbutamol β2-adrenergic-activation. [(11)C]acetate PET MBF was performed at rest + salbutamol (SB 0.2, 1.0 μg/kg/min) and norepinephrine (NE 3.2 μg/kg/min) stress to measure an index of MBF response. β-adrenergic specificity of NE was evaluated by pretreatment with α-adrenergic-antagonist phentolamine (PHE), and β2-selectivity was assessed using SB. Adjusting for changes in heart rate × systolic blood pressure product (RPP), the same stress/rest MBF ratio of 1.4 was measured using low-dose SB and NE in normal mice (equivalent to human CPT response). The MBF response was correlated with changes in MVO2 (p = 0.02). Nitric oxide synthase (NOS)-inhibited mice (N(g)-nitro-L-arginine methyl ester (L-NAME) pretreatment and endothelial nitric oxide synthase (eNOS) knockout) were used to assess the EFRNOM, in which the low-dose SB- and NE-stress MBF responses were completely blocked (p = 0.02). With high-dose SB-stress, the MBF ratio was reduced by 0.4 following NOS inhibition (p = 0.03). Low-dose salbutamol β2-adrenergic-stress [(11)C]acetate micro-PET imaging can be used to measure coronary-specific EFRNOM in mice and may be suitable for assessment of endothelial dysfunction in small animal models of disease and evaluation of new therapies.
    12/2014; 4(1):68. DOI:10.1186/s13550-014-0068-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular disease is the leading cause of death worldwide. Molecular imaging with targeted tracers by positron emission tomography (PET) allows for the noninvasive detection and characterization of biological changes at the molecular level, leading to earlier disease detection, objective monitoring of therapies, and better prognostication of cardiovascular diseases progression. Here we review, the current role of PET in cardiovascular disease, with emphasize on tracers developed for PET imaging of cardiovascular diseases.
    BioMed Research International 01/2014; 2014:504532. DOI:10.1155/2014/504532 · 2.71 Impact Factor