Article

Application of pyramided traits against Lepidoptera in insect resistance management for Bt crops

Dow AgroSciences LLC, Indianapolis, IN, USA.
GM crops & food 07/2012; 3(3):154-62. DOI: 10.4161/gmcr.20945
Source: PubMed

ABSTRACT Since initial launch of insect protected transgenic crops, the most effective strategy to manage the potential for target pests to evolve resistance has been the use of a single mode of action with "high dose" and structured refuge. However, the effectiveness of this strategy is limited if mortality of certain pests does not reach "high dose" criteria, inconsistent implementation of refuges and non-rare resistance alleles. More recently, several pyramided trait products, which include multiple modes of action against key target pests, have been developed. These products offer the potential for dramatically improved resistance management with smaller refuges and less dependence on high mortality of susceptible and heterozygous insects and rare resistance alleles. We show that products such as SmartStax and PowerCore offer compelling resistance management benefits compared with single mode of action products and allow for the option of products containing refuge seed mixtures rather than structured refuges to effectively delay resistance. We conclude that all stakeholders, including technology developers, growers, crop advisors, extensions services and regulatory authorities should continue to encourage the development, deployment and adoption of pyramided trait products for improved pest management and improved resistance management.

Download full-text

Full-text

Available from: Graham P Head, Jul 24, 2015
3 Followers
 · 
277 Views
  • Source
    • "Resistance management programs for Bt crops rely on strategies to delay the evolution of resistance, including the high dose-refuge strategy and the use of Bt ''pyramids'' (Storer et al., 2012; Zhao et al., 2005; Tabashnik et al., 2008). Bt pyramid plants are those that produce at least two distinct Bt toxins that are active against the same pest (Tabashnik et al., 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacillus thuringiensis (Bt) insecticidal crystal (Cry) proteins are effective against some insect pests in sprays and transgenic crops, although the evolution of resistance could threaten the long-term efficacy of such Bt use. One strategy to delay resistance to Bt crops is to "pyramid" two or more Bt proteins that bind to distinct receptor proteins within the insect midgut. The most common Bt pyramid in cotton (Gossypium hirsutum L.) employs Cry1Ac with Cry2Ab to target several key lepidopteran pests, including the beet armyworm, Spodoptera exigua (Hübner), which is a serious migratory pest of many vegetable crops and is increasingly important in cotton in China. While cadherin and aminopeptidase-N are key receptors of Cry1 toxins in many lepidopterans including S. exigua, the receptor for Cry2A toxins remains poorly characterized. Here, we show that a heterologous expressed peptide corresponding to cadherin repeat 7 to the membrane proximal extracellular domain (CR7-MPED) in the S. exigua cadherin 1b (SeCad1b) binds Cry1Ac and Cry2Aa. Moreover, SeCad1b transcription was suppressed in S. exigua larvae by oral RNA interference and susceptibility to Cry1Ac and Cry2Aa was significantly reduced. These results indicate that SeCad1b plays important functional roles of both Cry1Ac and Cry2Aa, having major implications for resistance management for S. exigua in Bt crops. Copyright © 2015. Published by Elsevier Inc.
    Journal of Invertebrate Pathology 03/2015; 127. DOI:10.1016/j.jip.2015.02.009 · 2.60 Impact Factor
  • Source
    • "The transition to pyramided Bt-maize only is ongoing (Storer et al. 2012b), but the current landscape of Diabrotica-active Bt-maize comprises a mosaic of Bt-maize expressing a single or multiple toxins. This situation poses a challenge, as mosaics could theoretically foster the evolution of resistance to pyramided Bt-maize if WCR evolved resistance to a single toxin Bt-maize that is also used in pyramided Bt-maize (Gould 2003; Zhao et al. 2005; Siegfried and Hellmich 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified Bt-maize offers an additional management tool for WCR and has been valuable in reducing insecticide use and increasing farm income. A concern is that the widespread, repeated, and exclusive deployment of the same Bt-maize transformation event will result in the rapid evolution of resistance in WCR. This publication explores the potential of WCR to evolve resistance to plant-produced Bt-toxins from the first generation of Diabrotica-active Bt-maize events (MON 863 and MON 88017, DAS-59122-7 and MIR604), and whether currently implemented risk management strategies to delay and monitor resistance evolution are appropriate. In twelve of the twelve artificial selection experiments reported, resistant WCR populations were yielded rapidly. Field-selected resistance of WCR to Cry3Bb1 is documented in some US maize growing areas, where an increasing number of cases of unexpected damage of WCR larvae to Bt-maize MON 88017 has been reported. Currently implemented insect resistance management measures for Bt-crops usually rely on the high dose/refuge (HDR) strategy. Evidence (including laboratory, greenhouse and field data) indicates that several conditions contributing to the success of the HDR strategy may not be met for the first generation of Bt-maize events and WCR: (1) the Bt-toxins are expressed heterogeneously at a low-to-moderate dose in roots; (2) resistance alleles may be present at a higher frequency than initially assumed; (3) WCR may mate in a non-random manner; (4) resistance traits could have non-recessive inheritance; and (5) fitness costs may not necessarily be associated with resistance evolution. However, caution must be exercised when extrapolating laboratory and greenhouse results to field conditions. Model predictions suggest that a 20 % refuge of non-Diabrotica-active Bt-maize can delay resistance evolution in WCR under certain conditions. This publication concludes that further research is needed to resolve the remaining scientific uncertainty related to the appropriateness of the HDR in delaying resistance evolution in WCR, resistance monitoring is essential to detect early warning signs indicating resistance evolution in the field, and that integrated pest management reliant on multiple tactics should be deployed to ensure effective long-term corn rootworm management and sustainable use of Bt-maize.
    Transgenic Research 09/2012; 22(2). DOI:10.1007/s11248-012-9657-4 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2006, reports of potential Spodoptera frugiperda resistance to TC1507 maize in Puerto Rico were received. Subsequent investigation confirmed that pest populations collected from several sites in Puerto Rico were largely unaffected by the Cry1F protein in bioassays, with resistance ratios likely in excess of 1000. Since then, we have continued monitoring populations in Puerto Rico and in southern areas of the mainland US. The majority of the collections from Puerto Rico continue to show high levels of Cry1F resistance whereas populations collected from the southern US mainland continue to show full susceptibility to Cry1F and TC1507 maize. It does not appear that resistant populations have spread to any measurable extent from Puerto Rico to mainland US, nor that local selection pressure from Cry1F-expressing maize or cotton production in the southern US has caused a measurable change in population susceptibility. Lessons learned from Puerto Rico are being applied in other parts of the Americas where TC1507 maize is grown and additional steps being taken to protect the long-term durability of Cry1F in maize in areas where similar selection pressure may be expected. Tactics include using locally-adapted germplasm that contain native Spodoptera resistance, a robust education program to teach end-users about the potential for resistance to develop appropriate crop stewardship, resistance monitoring, and the use of insecticides under high S. frugiperda pressure. Perhaps most importantly, pyramided trait products that produce two or more different Bt proteins are being introduced to further delay resistance development to Cry1F.
    Journal of Invertebrate Pathology 04/2012; 110(3):294-300. DOI:10.1016/j.jip.2012.04.007 · 2.60 Impact Factor
Show more