Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart

Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, ML 7020, 240 Albert Sabin Way, Cincinnati, OH 45229, USA.
Developmental Biology (Impact Factor: 3.55). 06/2012; 368(2):345-57. DOI: 10.1016/j.ydbio.2012.06.002
Source: PubMed


The Silences of the Archives, the Reknown of the Story.
The Martin Guerre affair has been told many times since Jean de Coras and Guillaume Lesueur published their stories in 1561. It is in many ways a perfect intrigue with uncanny resemblance, persuasive deception and a surprizing end when the two Martin stood face to face, memory to memory, before captivated judges and a guilty feeling Bertrande de Rols. The historian wanted to go beyond the known story in order to discover the world of the heroes. This research led to disappointments and surprizes as documents were discovered concerning the environment of Artigat’s inhabitants and bearing directly on the main characters thanks to notarial contracts. Along the way, study of the works of Coras and Lesueur took a new direction. Coming back to the affair a quarter century later did not result in finding new documents (some are perhaps still buried in Spanish archives), but by going back over her tracks, the historian could only be struck by the silences of the archives that refuse to reveal their secrets and, at the same time, by the possible openings they suggest, by the intuition that almost invisible threads link here and there characters and events.

17 Reads
  • Source
    • "Multiple transcription factors such as SLUG, E-cadherin, TCF21, WT1, and TBX18 have been implicated in EMT and lineage development of EPDCs [2], [3], [20]. Among them, WT1 and TBX18 act as epicardial reporters [4], [27], whereas the inhibition of TCF21 leads to increased differentiation of EPDCs into vascular smooth muscles [28]. Additionally, the expression of SLUG is usually increased during EMT process with downregulation of E-cadherin. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanism that regulates epicardial development has yet to be understood. In this study, we explored the function of CDX1, a Caudal-related family member, in epicardial epithelial-to-mesenchymal transition (EMT) and in the migration and the differentiation of epicardium-derived progenitors into vascular smooth muscle cells. We detected a transient expression of CDX1 in murine embryonic hearts at 11.5 days post coitum (dpc). Using a doxycycline-inducible CDX1 mouse model, primary epicardium, and ex vivo heart culture, we further demonstrated that ectopic expression of CDX1 promoted epicardial EMT. In addition, a low-dose CDX1 induction led to enhanced migration and differentiation of epicardium-derived cells into α-SMA+ vascular smooth muscles. In contrast, either continued high-level induction of CDX1 or CDX1 deficiency attenuated the ability of epicardium-derived cells to migrate and to mature into smooth muscles induced by TGF-β1. Further RNA-seq analyses showed that CDX1 induction altered the transcript levels of genes involved in neuronal development, angiogenesis, and cell adhesions required for EMT. Our data have revealed a previously undefined role of CDX1 during epicardial development, and suggest that transient expression of CDX1 promotes epicardial EMT, whereas subsequent down-regulation of CDX1 after 11.5 dpc in mice is necessary for further subepicardial invasion of EPDCs and contribution to coronary vascular endothelium or smooth muscle cells.
    PLoS ONE 07/2014; 9(7):e103271. DOI:10.1371/journal.pone.0103271 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Calcific aortic valve disease (CAVD) is a major public health problem with no effective treatment available other than surgery. We previously showed that mature heart valves calcify in response to retinoic acid (RA) treatment through downregulation of the SRY transcription factor Sox9. In this study, we investigated the effects of excess vitamin A and its metabolite RA on heart valve structure and function in vivo and examined the molecular mechanisms of RA signaling during the calcification process in vitro. Methods and results: Using a combination of approaches, we defined calcific aortic valve disease pathogenesis in mice fed 200 IU/g and 20 IU/g of retinyl palmitate for 12 months at molecular, cellular, and functional levels. We show that mice fed excess vitamin A develop aortic valve stenosis and leaflet calcification associated with increased expression of osteogenic genes and decreased expression of cartilaginous markers. Using a pharmacological approach, we show that RA-mediated Sox9 repression and calcification is regulated by classical RA signaling and requires both RA and retinoid X receptors. Conclusions: Our studies demonstrate that excess vitamin A dietary intake promotes heart valve calcification in vivo. Therefore suggesting that hypervitaminosis A could serve as a new risk factor of calcific aortic valve disease in the human population.
    Arteriosclerosis Thrombosis and Vascular Biology 11/2012; 33(2). DOI:10.1161/ATVBAHA.112.300388 · 6.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The epicardium is a mesothelial cell layer essential for vertebrate heart development and pertinent for cardiac repair post-injury in the adult. The epicardium initially forms from a dynamic precursor structure, the proepicardial organ, from which cells migrate onto the heart surface. During the initial stage of epicardial development crucial epicardial-derived cell lineages are thought to be determined. Here, we define an essential requirement for transcription factor Tcf21 during early stages of epicardial development in Xenopus, and show that depletion of Tcf21 results in a disruption in proepicardial cell specification and failure to form a mature epithelial epicardium. Using a mass spectrometry-based approach we defined Tcf21 interactions and established its association with proteins that function as transcriptional co-repressors. Furthermore, using an in vivo systems-based approach, we identified a panel of previously unreported proepicardial precursor genes that are persistently expressed in the epicardial layer upon Tcf21 depletion, thereby confirming a primary role for Tcf21 in the correct determination of the proepicardial lineage. Collectively, these studies lead us to propose that Tcf21 functions as a transcriptional repressor to regulate proepicardial cell specification and the correct formation of a mature epithelial epicardium.
    Development 05/2013; 140(11). DOI:10.1242/dev.093385 · 6.46 Impact Factor
Show more


17 Reads
Available from