Evaluating knee replacement mechanics during ADL with PID-controlled dynamic finite element analysis.

a Computational Biomechanics Lab , University of Denver , 2390 S. York Street , Denver , CO , 80208 , USA.
Computer Methods in Biomechanics and Biomedical Engineering (Impact Factor: 1.79). 06/2012; DOI: 10.1080/10255842.2012.684242
Source: PubMed

ABSTRACT Validated computational knee simulations are valuable tools for design phase development of knee replacement devices. Recently, a dynamic finite element (FE) model of the Kansas knee simulator was kinematically validated during gait and deep flexion cycles. In order to operate the computational simulator in the same manner as the experiment, a proportional-integral-derivative (PID) controller was interfaced with the FE model to control the quadriceps actuator excursion and produce a target flexion profile regardless of implant geometry or alignment conditions. The controller was also expanded to operate multiple actuators simultaneously in order to produce in vivo loading conditions at the joint during dynamic activities. Subsequently, the fidelity of the computational model was improved through additional muscle representation and inclusion of relative hip-ankle anterior-posterior (A-P) motion. The PID-controlled model was able to successfully recreate in vivo loading conditions (flexion angle, compressive joint load, medial-lateral load distribution or varus-valgus torque, internal-external torque, A-P force) for deep knee bend, chair rise, stance-phase gait and step-down activities.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Clinical studies demonstrate substantial variation in kinematic and functional performance within the total knee replacement (TKR) patient population. Some of this variation is due to differences in implant design, surgical technique and component alignment, while some is due to subject-specific differences in joint loading and anatomy that are inherently present within the population. Combined finite element and probabilistic methods were employed to assess the relative contributions of implant design, surgical, and subject-specific factors to overall tibiofemoral (TF) and patellofemoral (PF) joint mechanics, including kinematics, contact mechanics, joint loads, and ligament and quadriceps force during simulated squat, stance-phase gait and stepdown activities. The most influential design, surgical and subject-specific factors were femoral condyle sagittal plane radii, tibial insert superior-inferior (joint line) position and coronal plane alignment, and vertical hip load, respectively. Design factors were the primary contributors to condylar contact mechanics and TF anterior-posterior kinematics; TF ligament forces were dependent on surgical factors; and joint loads and quadriceps force were dependent on subject-specific factors. Understanding which design and surgical factors are most influential to TKR mechanics during activities of daily living, and how robust implant designs and surgical techniques must be in order to adequately accommodate subject-specific variation, will aid in directing design and surgical decisions towards optimal TKR mechanics for the population as a whole.
    Journal of Biomechanics 06/2012; 45(12):2092-102. DOI:10.1016/j.jbiomech.2012.05.035 · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For clinically predictive testing and design-phase evaluation of prospective total knee replacement (TKR) implants, devices should ideally be evaluated under physiological loading conditions which incorporate population-level variability. A challenge exists for experimental and computational researchers in determining appropriate loading conditions for wear and kinematic knee simulators which reflect in vivo joint loading conditions. There is a great deal of kinematic data available from fluoroscopy studies. The purpose of this work was to develop computational methods to derive anterior-posterior (A-P) and internal-external (I-E) tibiofemoral (TF) joint loading conditions from in vivo kinematic data. Two computational models were developed, a simple TF model, and a more complex lower limb model. These models were driven through external loads applied to the tibia and femur in the TF model, and applied to the hip, ankle and muscles in the lower limb model. A custom feedback controller was integrated with the finite element environment and used to determine the external loads required to reproduce target kinematics at the TF joint. The computational platform was evaluated using in vivo kinematic data from four fluoroscopy patients, and reproduced in vivo A-P and I-E motions and compressive force with a root-mean-square (RMS) accuracy of less than 1mm, 0.1°, and 40N in the TF model and in vivo A-P and I-E motions, TF flexion, and compressive loads with a RMS accuracy of less than 1mm, 0.1°, 1.4°, and 48N in the lower limb model. The external loading conditions derived from these models can ultimately be used to establish population variability in loading conditions, for eventual use in computational as well as experimental activity simulations.
    Journal of Biomechanics 04/2014; 47(10). DOI:10.1016/j.jbiomech.2014.04.024 · 2.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Posterior-stabilized (PS) total knee arthroplasty (TKA) components employ a tibial post and femoral cam mechanism to guide anteroposterior knee motion in lieu of the posterior cruciate ligament. Some PS TKA patients report a clicking sensation when the post and cam engage, while severe wear and fracture of the post; we hypothesize that these complications are associated with excessive impact velocity at engagement. We evaluated the effect of implant design on engagement dynamics of the post-cam mechanism and resulting polyethylene stresses during dynamic activity. In vitro simulation of a knee bend activity was performed for four cadaveric specimens implanted with PS TKA components. Post-cam engagement velocity and flexion angle at initial contact were determined. The experimental data were used to validate computational predictions of PS mechanics using the same loading conditions. A lower limb model was subsequently utilized to compare engagement mechanics of eight TKA designs, relating differences between implants to geometric design features. Flexion angle and post-cam velocity at engagement demonstrated considerable ranges among designs (23°-89°, and 0.05-0.22 mm/°, respectively). Post-cam velocity was correlated (r = 0.89) with tibiofemoral condylar design features. Condylar geometry, in addition to post-cam geometry, played a significant role in minimizing engagement velocity and forces and stresses in the post. This analysis guides selection and design of PS implants that facilitate smooth post-cam engagement and reduce edge loading of the post. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res.
    Journal of Orthopaedic Research 09/2013; 31(9). DOI:10.1002/jor.22366 · 2.97 Impact Factor