Article

Mechanisms of white matter changes induced by meditation.

Department of Psychology, Texas Tech Neuroimaging Institute, Texas Tech University, Lubbock, TX 79409, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2012; 109(26):10570-4. DOI: 10.1073/pnas.1207817109
Source: PubMed

ABSTRACT Using diffusion tensor imaging, several recent studies have shown that training results in changes in white matter efficiency as measured by fractional anisotropy (FA). In our work, we found that a form of mindfulness meditation, integrative body-mind training (IBMT), improved FA in areas surrounding the anterior cingulate cortex after 4-wk training more than controls given relaxation training. Reductions in radial diffusivity (RD) have been interpreted as improved myelin but reductions in axial diffusivity (AD) involve other mechanisms, such as axonal density. We now report that after 4-wk training with IBMT, both RD and AD decrease accompanied by increased FA, indicating improved efficiency of white matter involves increased myelin as well as other axonal changes. However, 2-wk IBMT reduced AD, but not RD or FA, and improved moods. Our results demonstrate the time-course of white matter neuroplasticity in short-term meditation. This dynamic pattern of white matter change involving the anterior cingulate cortex, a part of the brain network related to self-regulation, could provide a means for intervention to improve or prevent mental disorders.

Full-text

Available from: Michael I Posner, May 29, 2015
7 Followers
 · 
189 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meditation can be defined as a form of mental training that aims to improve an individual's core psychological capacities, such as attentional and emotional self-regulation. Meditation encompasses a family of complex practices that include mindfulness meditation, mantra meditation, yoga, tai chi and chi gong 1. Of these practices , mindfulness meditation — often described as non-judgemental attention to present-moment experiences (BOX 1) — has received most attention in neuroscience research over the past two decades 2–8. Although meditation research is in its infancy, a number of studies have investigated changes in brain activation (at rest and during specific tasks) that are associated with the practice of, or that follow, training in mindfulness meditation. These studies have reported changes in multiple aspects of mental function in beginner and advanced meditators, healthy individuals and patient populations 9–14. In this Review, we consider the current state of research on mindfulness meditation. We discuss the methodological challenges that the field faces and point to several shortcomings in existing studies. Taking into account some important theoretical considerations, we then discuss behavioural and neuroscientific findings in light of what we think are the core components of meditation practice: attention control, emotion regulation and self-awareness (BOX 1). Within this framework, we describe research that has revealed changes in behaviour, brain activity and brain structure following mindfulness meditation training. We discuss what has been learned so far from this research and suggest new research strategies for the field. We focus here on mindfulness meditation practices and have excluded studies on other types of meditation. However, it is important to note that other styles of meditation may operate via distinct neural mechanisms
    Nature Reviews Neuroscience 03/2015; 16(4). DOI:10.1038/nrn3916 · 31.38 Impact Factor
  • Source
    08/2015; 4. DOI:10.1016/j.cobeha.2014.12.008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive functions.
    Frontiers in Systems Neuroscience 01/2015; 9:44. DOI:10.3389/fnsys.2015.00044