Article

Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss.

Computer Science and Artificial Intelligence Laboratory, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Bioinformatics (Impact Factor: 4.62). 06/2012; 28(12):i283-91. DOI: 10.1093/bioinformatics/bts225
Source: PubMed

ABSTRACT Gene family evolution is driven by evolutionary events such as speciation, gene duplication, horizontal gene transfer and gene loss, and inferring these events in the evolutionary history of a given gene family is a fundamental problem in comparative and evolutionary genomics with numerous important applications. Solving this problem requires the use of a reconciliation framework, where the input consists of a gene family phylogeny and the corresponding species phylogeny, and the goal is to reconcile the two by postulating speciation, gene duplication, horizontal gene transfer and gene loss events. This reconciliation problem is referred to as duplication-transfer-loss (DTL) reconciliation and has been extensively studied in the literature. Yet, even the fastest existing algorithms for DTL reconciliation are too slow for reconciling large gene families and for use in more sophisticated applications such as gene tree or species tree reconstruction.
We present two new algorithms for the DTL reconciliation problem that are dramatically faster than existing algorithms, both asymptotically and in practice. We also extend the standard DTL reconciliation model by considering distance-dependent transfer costs, which allow for more accurate reconciliation and give an efficient algorithm for DTL reconciliation under this extended model. We implemented our new algorithms and demonstrated up to 100 000-fold speed-up over existing methods, using both simulated and biological datasets. This dramatic improvement makes it possible to use DTL reconciliation for performing rigorous evolutionary analyses of large gene families and enables its use in advanced reconciliation-based gene and species tree reconstruction methods.
Our programs can be freely downloaded from http://compbio.mit.edu/ranger-dtl/.

1 Bookmark
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, superoxide dismutase and catalase activity, and oxide detoxicating ability.
    Frontiers in Microbiology 10/2014; 5:547. · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Analyzed individually, gene trees for a given taxon set tend to harbour incongruent or conflicting signals. One popular approach to deal with this circumstance is to use concatenated data. But especially in prokaryotes, where lateral gene transfer (LGT) is a natural mechanism of generating genetic diversity, there are open questions as to whether concatenation amplifies or averages phylogenetic signals residing in individual genes. Here we investigate concatenations of prokaryotic and eukaryotic datasets to investigate possible sources of incongruence in phylogenetic trees and to examine the level of overlap between individual and concatenated alignments.ResultsWe analyzed prokaryotic datasets comprising 248 invidual gene trees from 315 genomes at three taxonomic depths spanning gammaproteobacteria, proteobacteria, and prokaryotes (bacteria plus archaea), and eukaryotic datasets comprising 279 invidual gene trees from 85 genomes at two taxonomic depths: across plants-animals-fungi and within fungi. Consistent with previous findings, the branches in trees made from concatenated alignments are, in general, not supported by any of their underlying individual gene trees, even though the concatenation trees tend to possess high bootstrap proportions values. For the prokaryote data, this observation is independent of phylogenetic depth and sequence conservation. The eukaryotic data show much better agreement between concatenation and single gene trees. LGT frequencies in trees were estimated using established methods. Sequence length in individual alignments, but not sequence divergence, was found to correlate with the generation of branches that correspond to the concatenated tree.Conclusions The weak correspondence of concatenation trees with single gene trees gives rise to the question where the phylogenetic signal in concatenated trees is coming from. The eukaryote data reveals a better correspondence between individual and concatenation trees than the prokaryote data. The question of whether the lack of correspondence between individual genes and the concatenation tree in the prokaryotic data is due to LGT or phylogenetic artefacts is remains unanswered. If LGT is the cause of incongruence between concatenation and individual trees, we would have expected to see greater degrees of incongruence for more divergent prokaryotic data sets, which was not observed, although estimated rates of LGT suggest that LGT is responsible for at least some of the observed incongruence.
    BMC Evolutionary Biology 12/2014; 14(1):2624. · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traditionally, gene phylogenies have been reconstructed solely on the basis of molecular sequences; this, however, often does not provide enough information to distinguish between statistically equivalent relationships. To address this problem, several recent methods have incorporated information on the species phylogeny in gene tree reconstruction, leading to dramatic improvements in accuracy. While probabilistic methods are able to estimate all model parameters but are computationally expensive, parsimony methods - generally computationally more efficient - require a prior estimate of parameters and of the statistical support.
    Bioinformatics (Oxford, England). 11/2014;

Full-text (2 Sources)

Download
32 Downloads
Available from
May 30, 2014