Article

Altered tRNA characteristics and 3' maturation in bacterial symbionts with reduced genomes.

Department of Ecology and Evolutionary Biology, West Campus, Yale University, PO Box 27388 West Haven, CT 06516-7388, USA.
Nucleic Acids Research (Impact Factor: 8.81). 06/2012; 40(16):7870-84. DOI: 10.1093/nar/gks503
Source: PubMed

ABSTRACT Translational efficiency is controlled by tRNAs and other genome-encoded mechanisms. In organelles, translational processes are dramatically altered because of genome shrinkage and horizontal acquisition of gene products. The influence of genome reduction on translation in endosymbionts is largely unknown. Here, we investigate whether divergent lineages of Buchnera aphidicola, the reduced-genome bacterial endosymbiont of aphids, possess altered translational features compared with their free-living relative, Escherichia coli. Our RNAseq data support the hypothesis that translation is less optimal in Buchnera than in E. coli. We observed a specific, convergent, pattern of tRNA loss in Buchnera and other endosymbionts that have undergone genome shrinkage. Furthermore, many modified nucleoside pathways that are important for E. coli translation are lost in Buchnera. Additionally, Buchnera's A + T compositional bias has resulted in reduced tRNA thermostability, and may have altered aminoacyl-tRNA synthetase recognition sites. Buchnera tRNA genes are shorter than those of E. coli, as the majority no longer has a genome-encoded 3' CCA; however, all the expressed, shortened tRNAs undergo 3' CCA maturation. Moreover, expression of tRNA isoacceptors was not correlated with the usage of corresponding codons. Overall, our data suggest that endosymbiont genome evolution alters tRNA characteristics that are known to influence translational efficiency in their free-living relative.

0 Bookmarks
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Decoding of all codons can be achieved by a subset of tRNAs. In bacteria, certain tRNA species are mandatory, while others are auxiliary and are variably used. It is currently unknown how this variability has evolved and whether it provides an adaptive advantage. Here we shed light on the subset of auxiliary tRNAs, using genomic data from 319 bacteria. By reconstructing the evolution of tRNAs we show that the auxiliary tRNAs are highly dynamic, being frequently gained and lost along the phylogenetic tree, with a clear dominance of loss events for most auxiliary tRNA species. We reveal distinct co-gain and co-loss patterns for subsets of the auxiliary tRNAs, suggesting that they are subjected to the same selection forces. Controlling for phylogenetic dependencies, we find that the usage of these tRNA species is positively correlated with GC content and may derive directly from nucleotide bias or from preference of Watson-Crick codon-anticodon interactions. Our results highlight the highly dynamic nature of these tRNAs and their complicated balance with codon usage.
    Nucleic Acids Research 04/2014; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome architecture of a microbe markedly changes when it transitions from a free-living lifestyle to an obligate symbiotic association within eukaryotic cells. These symbiont genomes experience numerous rearrangements and massive gene loss, which is expected to radically alter gene regulatory networks compared with those of free-living relatives. As such, it remains unclear whether and how these small symbiont genomes regulate gene expression. Here, using a label-free mass-spec quantification approach we found that differential protein regulation occurs in Buchnera, a model symbiont with a reduced genome, when it transitions between two distinct life stages. However, differential mRNA expression could not be detected between Buchnera life stages, despite the presence of a small number of putative transcriptional regulators. Instead a comparative analysis of small RNA expression profiles among five divergent Buchnera lineages, spanning a variety of Buchnera life stages, reveals 140 novel intergenic and antisense small RNAs and 517 untranslated regions that were significantly expressed, some of which have been conserved for ∼65 million years. In addition, the majority of these small RNAs exhibit both sequence covariation and thermodynamic stability, indicators of a potential structural RNA role. Together, these data suggest that gene regulation at the post-transcriptional level may be important in Buchnera. This is the first study to empirically identify Buchnera small RNAs, and we propose that these novel small RNAs may facilitate post-transcriptional regulation through translational inhibition/activation, and/or transcript stability. Ultimately, post-transcriptional regulation may shape metabolic complementation between Buchnera and its aphid host, thus impacting the animal's ecology and evolution.The ISME Journal advance online publication, 11 July 2014; doi:10.1038/ismej.2014.121.
    The ISME Journal 07/2014; · 8.95 Impact Factor

Full-text (2 Sources)

View
28 Downloads
Available from
Jun 1, 2014