Genome Sequence of Bacillus licheniformis WX-02

State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China.
Journal of bacteriology (Impact Factor: 2.81). 07/2012; 194(13):3561-2. DOI: 10.1128/JB.00572-12
Source: PubMed


Bacillus licheniformis is an important bacterium that has been used extensively for large-scale industrial production of exoenzymes and peptide antibiotics. B. licheniformis WX-02 produces poly-gamma-glutamate increasingly when fermented under stress conditions. Here its genome sequence (4,270,104 bp, with G+C content of 46.06%), which comprises a circular chromosome, is announced.

Download full-text


Available from: Gaofu Qi, Apr 18, 2014
  • Source
    • "Madslien et al. (2013) detected lchAA gene in all 53 tested B. licheniformis strains that produced significant amount of lichenysin. Similarly, the lichenysin operon was also found in the genome sequence of B. licheniformis WX-02 (Yangtse et al. 2012). Based on all these findings, the recombinant vectors including T2(2)-P43, T2(2)-Pxyl and T2(2)-Psrf were therefore constructed based on the lchAA gene sequence (Figs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lichenysin is a biodegradable surfactant with huge potential for recovering crude oil from the oil reservoir. The current production of lichenysin is made through fermentation from wild strain of Bacillus licheniformis, which is limited by low yield. The aim of this work was to improve lichenysin-producing capability of a wide strain B. licheniformis WX-02. Lichenysin produced from WX-02 was first extracted, purified, and identified. Through the substitution of the promoter of lichenysin biosynthesis operon, the mutants B. licheniformis WX02-P43lch, WX02-Pxyllch, and WX02-Psrflch were constructed with the constitutive promoter (P43), the xylose-inducible promoter (P xyl ), and the surfactin operon promoter (P srf ), respectively. A consistent change trend was observed between lichenysin production and lchAA gene transcription, confirming the strength of the promoters as an important factor for lichenysin synthesis. Among the three mutants, WX02-Psrflch produced the highest lichenysin yield. The production by the mutant WX02-Psrflch was further improved with the optimization of the major medium components including glucose, NH4NO3, and Na2HPO4/KH2PO4. Under 30 g/L glucose, 5 g/L NH4NO3, and 80 mM/60 mM Na2HPO4/KH2PO4, the strain WX02-Psrflch produced 2,149 mg/L lichenysin, a 16.8-fold improvement compared to that of wild strain WX-02.
    Applied Microbiology and Biotechnology 08/2014; 98(21). DOI:10.1007/s00253-014-5978-y · 3.34 Impact Factor
  • Source
    • "Experiments were performed with the strains and plasmids listed in Table 1. The oligonucleotide primers listed in Table 2 were designed on the basis of B. licheniformis WX-02 genome sequence [GenBank: AHIF00000000] [16]. Luria-Bertani (LB) medium was prepared for culture of E. coli DH5α and also B. licheniformis[23]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: D-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optical purity. Bacillus licheniformis is a potential 2,3-butanediol producer but the wild type strain (WX-02) produces a mix of D- and meso-type isomers. BudC in B. licheniformis is annotated as 2,3-butanediol dehydrogenase or acetoin reductase, but no pervious experiment was performed to verify this hypothesis. We developed a genetically modified strain of B. licheniformis (WX-02 DeltabudC) as a D-2,3-butanediol producer with high optimal purity. A marker-less gene deletion protocol based on a temperature sensitive knock-out plasmid T2-Ori was used to knock out the budC gene in B. licheniformis WX-02. The budC knock-out strain successfully abolished meso-2,3-butanediol production with enhanced D-2,3-butanediol production. No meso-BDH activity was detectable in cells of this strain. On the other hand, the complementary strain restored the characteristics of wild strain, and produced meso-2,3-butanediol and possessed meso-BDH activity. All of these data suggested that budC encoded the major meso-BDH catalyzing the reversible reaction from acetoin to meso-2,3-butanediol in B. licheniformis. The budC knock-out strain produced D-2,3-butanediol isomer only with a high yield of 30.76 g/L and a productivity of 1.28 g/L-h. We confirmed the hypothesis that budC gene is responsible to reversibly transfer acetoin to meso-2,3-butanediol in B. licheniformis. A mutant strain of B. licheniformis with depleted budC gene was successfully developed and produced high level of the D-2,3- butanediol with high optimal purity.
    Biotechnology for Biofuels 01/2014; 7(1):16. DOI:10.1186/1754-6834-7-16 · 6.04 Impact Factor
  • Source
    • "PGA is mainly found as a capsular polymer; therefore, its accumulation as an exo-polymer, as observed for B. subtilis and B. licheniformis, the PGA synthetic system of which is virtually the same as that of B. subtilis (Wang et al., 2011; Yangtse et al., 2012), is currently considered a peculiar phenomenon. Comparative genetic analysis of the pgs and cap operons (Fig. 5) reveals a difference in their downstream genes for PGA cleavage. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Poly-γ-glutamate (PGA), a novel polyamide material with industrial applications, possesses a nylon-like backbone, is structurally similar to polyacrylic acid, is biodegradable and is safe for human consumption. PGA is frequently found in the mucilage of natto, a Japanese traditional fermented food. To date, three different types of PGA, namely a homo polymer of d-glutamate (D-PGA), a homo polymer of l-glutamate (L-PGA), and a random copolymer consisting of d- and l-glutamate (DL-PGA), are known. This review will detail the occurrence and physiology of PGA. The proposed reaction mechanism of PGA synthesis including its localization and the structure of the involved enzyme, PGA synthetase, are described. The occurrence of multiple carboxyl residues in PGA likely plays a role in its relative unsuitability for the development of bio-nylon plastics and thus, establishment of an efficient PGA-reforming strategy is of great importance. Aside from the potential applications of PGA proposed to date, a new technique for chemical transformation of PGA is also discussed. Finally, some techniques for PGA and its derivatives in advanced material technology are presented.
    Microbial Biotechnology 07/2013; 6(6). DOI:10.1111/1751-7915.12072 · 3.21 Impact Factor
Show more