The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box

Karolinska Institute, Center for Biosciences at NOVUM, Department of Biosciences and Nutrition, Hälsovägen 7, S-141 83 Huddinge, Sweden.
Developmental Biology (Impact Factor: 3.55). 06/2012; 368(2):415-26. DOI: 10.1016/j.ydbio.2012.05.033
Source: PubMed


At the core of the primary transcriptional network regulating ciliary gene expression in Caenorhabditis elegans sensory neurons is the RFX/DAF-19 transcription factor, which binds and thereby positively regulates 13-15 bp X-box promoter motifs found in the cis-regulatory regions of many ciliary genes. However, the variable expression of direct RFX-target genes in various sets of ciliated sensory neurons (CSNs) occurs through as of yet uncharacterized mechanisms. In this study the cis-regulatory regions of 41 direct RFX-target genes are compared using in vivo genetic analyses and computational comparisons of orthologous nematode sequences. We find that neither the proximity to the translational start site nor the exact sequence composition of the X-box promoter motif of the respective ciliary gene can explain the variation in expression patterns observed among different direct RFX-target genes. Instead, a novel enhancer element appears to co-regulate ciliary genes in a DAF-19 dependent manner. This cytosine- and thymidine-rich sequence, the C-box, was found in the cis-regulatory regions in close proximity to the respective X-box motif for 84% of the most broadly expressed direct RFX-target genes sampled in this study. Molecular characterization confirmed that these 8-11 bp C-box sequences act as strong enhancer elements for direct RFX-target genes. An artificial promoter containing only an X-box promoter motif and two of the C-box enhancer elements was able to drive strong expression of a GFP reporter construct in many C. elegans CSNs. These data provide a much-improved understanding of how direct RFX-target genes are differentially regulated in C. elegans and will provide a molecular model for uncovering the transcriptional network mediating ciliary gene expression in animals.

49 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the nematode worm Caenorhabditis elegans and several other animal species, many ciliary genes are regulated by RFX (Regulatory Factor binding to the X-box) transcription factors (TFs), which bind to X-box promoter motifs and thereby directly activate ciliary gene expression. This setup (RFX TF/X-box/ciliary gene) makes it possible to search for novel ciliary gene candidates genome-wide by using the X-box promoter motif as a search parameter. We present a computational approach that (i) identifies and extracts from whole genomes genes and the corresponding promoter sequences and annotations; (ii) searches through promoters for regulatory sequence elements (like promoter motifs) by using training sets of known instances of these elements; (iii) scores (evaluates) and sorts all positive hits in a database; and (iv) outputs a list of candidate genes and promoters with a given regulatory sequence element. Evolutionary conservation across species (orthology) of genes, promoters, or regulatory sequence elements is used as an important strengthening feature during the overall search approach. Our computational approach is set up in a modular fashion: not every part needs to be used for a particular search effort. In principle, our approach has broad applications. It applies to any group of genes that share common (conserved) regulation through common (conserved) regulatory sequence elements.
    Methods in enzymology 03/2013; 525:327-50. DOI:10.1016/B978-0-12-397944-5.00016-X · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Cells that have hundreds of tiny hair-like structures called cilia on their surface have important roles in our airways and also in the brain and reproductive system. By beating in a coordinated manner, the cilia cause fluid to flow in a particular direction. The development of these multiciliated cells is a complex process in which genes are expressed as proteins, with this gene expression being regulated by other proteins called transcription factors. In invertebrates the development of the cilia is controlled by transcription factors from the RFX family, which also appear to be important for development of cilia in vertebrates. However, the details of this process—in particular, the identities of the genes that are involved and how their functions are related—are not well understood in vertebrates. Chung et al. have sought to remedy this by analyzing the network of genes whose expression is controlled by the transcription factor Rfx2 in vertebrates. The results showed that the genes controlled by Rfx2 were involved in all aspects of cilia, including several genes that are known to be mutated in diseases caused by abnormal cilia. Chung et al. also identified genes that were not previously thought to be relevant to cilia. As multiciliated cells are developing, but before they can generate cilia, they must first migrate from the bottom of the epithelium, the layer of tissue in which they function, to the top of this layer. Chung et al. found that Rfx2 was also involved in this process. The approach taken by Chung et al.—which involved a combination of RNA sequence analysis, examination of Rfx2 binding sites on chromosomes, computational predictions of protein interactions and in vivo cellular imaging—could be used to perform similar systems-level analyses of other developmental and biological processes. DOI:
    eLife Sciences 01/2014; 3:e01439. DOI:10.7554/eLife.01439 · 9.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cilia play many essential roles in fluid transport and cellular locomotion, and as sensory hubs for a variety of signal transduction pathways. Despite having a conserved basic morphology, cilia vary extensively in their shapes and sizes, ultrastructural details, numbers per cell, motility patterns and sensory capabilities. Emerging evidence indicates that this diversity, which is intimately linked to the different functions that cilia perform, is in large part programmed at the transcriptional level. Here, we review our understanding of the transcriptional control of ciliary biogenesis, highlighting the activities of FOXJ1 and the RFX family of transcriptional regulators. In addition, we examine how a number of signaling pathways, and lineage and cell fate determinants can induce and modulate ciliogenic programs to bring about the differentiation of distinct cilia types.
    Development 04/2014; 141(7):1427-1441. DOI:10.1242/dev.074666 · 6.46 Impact Factor
Show more

Similar Publications


49 Reads
Available from