Article

RNA-binding proteins in neurological disease.

Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
Brain research (Impact Factor: 2.46). 06/2012; 1462:1-2. DOI: 10.1016/j.brainres.2012.05.038
Source: PubMed
1 Bookmark
 · 
155 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Frontotemporal lobar degeneration (FTLD) is clinically, pathologically and genetically heterogeneous. Three major proteins are implicated in its pathogenesis. About half of cases are characterized by depositions of the microtubule associated protein, tau (FTLD-tau). In most of the remaining cases, deposits of the transactive response (TAR) DNA-binding protein with Mw of 43 kDa, known as TDP-43 (FTLD-TDP), are seen. Lastly, about 5-10 % of cases are characterized by abnormal accumulations of a third protein, fused in sarcoma (FTLD-FUS). Depending on the protein concerned, the signature accumulations can take the form of inclusion bodies (neuronal cytoplasmic inclusions and neuronal intranuclear inclusions) or dystrophic neurites, in the cerebral cortex, hippocampus and subcortex. In some instances, glial cells are also affected by inclusion body formation. In motor neurone disease (MND), TDP-43 or FUS inclusions can present within motor neurons of the brain stem and spinal cord. This present paper attempts to critically examine the role of such proteins in the pathogenesis of FTLD and MND as to whether they might exert a direct pathogenetic effect (gain of function), or simply act as relatively innocent witnesses to a more fundamental loss of function effect. We conclude that although there is strong evidence for both gain and loss of function effects in respect of each of the proteins concerned, in reality, it is likely that each is a single face of either side of the coin, and that both will play separate, though complementary, roles in driving the damage which ultimately leads to the downfall of neurons and clinical expression of disease.
    Acta Neuropathologica 08/2012; 124(3):373-82. · 9.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A nuclear protein, transactivation response (TAR) DNA binding protein 43 kDa (TDP-43), is the major component of neuronal cytoplasmic inclusions (NCIs) in frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U) and sporadic amyotrophic lateral sclerosis (SALS). While initially thought to be relatively specific to FTLD-U and ALS, TDP-43 pathology has now been detected in a number of other neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. In such tauopathies and α-synucleinopathies, occurrence of TDP-43-positive neuronal cytoplasmic inclusions may be associated with other distinct molecular pathologic processes primarily involving their own pathological proteins, tau and α-synuclein, respectively (secondary TDP-43 proteinopathies). On the other hand, in several polyglutamine (polyQ) diseases, TDP-43 appears to play an important pathomechanistic role. Interestingly, intermediate-length polyQ expansions (27-33 Qs) in ataxin 2, the causative gene of spinocerebellar ataxia type 2, have recently been reported to be a genetic risk factor for SALS. Here, with a review of the literature, we discuss the relationship between ALS and polyQ diseases from the viewpoint of TDP-43 neuropathology.
    Neuropathology 07/2013; · 1.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vivo, RNA molecules are constantly accompanied by RNA binding proteins (RBPs), which are intimately involved in every step of RNA biology, including transcription, editing, splicing, transport and localization, stability, and translation. RBPs therefore have opportunities to shape gene expression at multiple levels. This capacity is particularly important during development, when dynamic chemical and physical changes give rise to complex organs and tissues. This review discusses RBPs in the context of heart development. Since the targets and functions of most RBPs - in the heart and at large - are not fully understood, this review focuses on the expression and roles of RBPs that have been implicated in specific stages of heart development or developmental pathology. RBPs are involved in nearly every stage of cardiogenesis, including the formation, morphogenesis, and maturation of the heart. A fuller understanding of the roles and substrates of these proteins could ultimately provide attractive targets for the design of therapies for congenital heart defects, cardiovascular disease, or cardiac tissue repair.
    The international journal of biochemistry & cell biology 08/2013; · 4.89 Impact Factor

Full-text (2 Sources)

View
219 Downloads
Available from
May 21, 2014