A review of influenza haemagglutinin receptor binding as it relates to pandemic properties

Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.
Vaccine (Impact Factor: 3.49). 06/2012; 30(29):4369-76. DOI: 10.1016/j.vaccine.2012.02.076
Source: PubMed

ABSTRACT Haemagglutinin is a determinant of many viral properties, and successful adaptation to a human-like form is thought to be an important step toward pandemic influenza emergence. The availability of structurally distinct sialic acid linked receptors in the sites of human and avian influenza infection are generally held to account for the differences observed, but the relevance of other selection pressures has not been elucidated. There is evidence for genetic and structural constraints of haemagglutinin playing a role in restricting haemagglutinin adaptation, and also for differences in the selection pressure to alter binding, specifically when considering virus replication within host compared to transmission between hosts. Understanding which characteristics underlie such adaptations in humans is now possible in greater detail by using glycan arrays. However, results from these assays must also interpreted in context of an as yet still to be determined detailed knowledge of the structural diversity of sialic acids in the human respiratory tract. A clearer understanding of the evolutionary benefits conveyed by different haemagglutinin properties would have substantial impact and would affect the risk we allocate to viral propagation in different species, such as swine and poultry. Relevant to the H5N1 threat, current evidence also suggests that mortality associated with any emergent pandemic from current strains may be reduced if haemagglutinin specificity changes, further emphasising the importance of understanding how and if selection pressures in the human will cause such an alteration.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA vaccine coding for infectious bursal disease virus (IBDV) polyprotein gene and that for avian influenza virus (AIV) hemagglutinin (HA) gene have been shown to induce immunity and provide protection against the respective disease. The present study was carried out to determine whether an IBDV polyprotein gene-based DNA fused with AIV HA gene could trigger immune response to both IBDV and AIV. After transfection, VP2 and HA were detected in the cytoplasm and at cell membrane, respectively, by immunofluorescent antibody double staining method, suggesting the fusion strategy did not affect the location of protein expression. VP4 cleavage between VP2 and HA was confirmed by Western blot, indicating the fusion strategy did not affect VP4 function in transfected cells. After vaccination in chickens, the DNA construct VP24-HA/pcDNA induced ELISA and virus neutralizing antibodies against VP2 and hemagglutination inhibition antibody against the HA subtype. The results indicated that a single plasmid construct carrying IBDV VP243 gene-based DNA fused with AIV HA gene can elicit specific antibody responses to both IBDV and AIV by DNA vaccination.
    Journal of Virological Methods 01/2015; 211. DOI:10.1016/j.jviromet.2014.10.011 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate immunity represents the first line of defense against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs) that recognize pathogen-associated molecular patterns and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a non-redundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the crossroad between innate immunity, inflammation, and female fertility. The human PTX3 protein contains a single N-glycosylation site that is fully occupied by complex type oligosaccharides, mainly fucosylated and sialylated biantennary glycans. Glycosylation has been implicated in a number of PTX3 activities, including neutralization of influenza viruses, modulation of the complement system, and attenuation of leukocyte recruitment. Therefore, this post translational modification might act as a fine tuner of PTX3 functions in native immunity and inflammation. Here we review the studies on PTX3, with emphasis on the glycan-dependent mechanisms underlying pathogen recognition and crosstalk with other components of the innate immune system.
    Frontiers in Immunology 01/2012; 3:407. DOI:10.3389/fimmu.2012.00407
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel ganglioside bearing Neua2-3Gal and Neua2-6Gal structures as distal sequences was designed as a ligand for influenza A viruses. The efficient synthesis of the designed ganglioside was accomplished by employing the cassette coupling approach as a key reaction, which was executed between the non-reducing end of the oligosaccharide and the cyclic glucosylceramide moiety. Examination of its binding activity to influenza A viruses revealed that the new ligand is recognized by Neua2-3 and 2-6 type viruses.
    Molecules 12/2012; 17(8):9590-620. DOI:10.3390/molecules17089590 · 2.42 Impact Factor